## Master Clock/Signalling Master Clock

Type series 920


- installation instructions
- operating instructions
Introduction ..... 5
General Remarks ..... 5
Electronic Memory. ..... 5
Radio Control (optionally), DCF77 antenna is an extra (item No. 03.925.111) ..... 5
Accuracy without Radio Control ..... 5
Power Supply/operating voltage ..... 5
Protective Devices ..... 5
Slave Clock Line Connections ..... 5
Power Outage Back-up Batteries ..... 6
Switch Channels (optionally), in that case we name it Signalling Master Clock ..... 6
Multilingual Navigation ..... 6
Data Transfer Interface ..... 6
Types of Master Clocks/Signalling Master Clocks, Item numbers, Extras, Options ..... 7
Safety Rules and Precautions ..... 7
Slave Clock Line Checklist ..... 8
Mounting the Master Clock ..... 9
Terminal connections for the full use of all features ..... 10
Starting (setting up) the Master Clock, use of menus ..... 11
Structure of the menu table ..... 11

1. Navigation by "Direct Dialling" ..... 11
2. Navigation with "arrow" keys ..... 11
Starting Operation ..... 12
Connecting mains power $230 \mathrm{VAC} / 50 \mathrm{~Hz}$ ..... 12
Switching "on" the Master Clock (also see menu 1) and set-up ..... 13
Connecting a PEWETA DCF77 receiving aerial/antenna ..... 14
Mounting and aligning the DCF77 receiving aerial/antenna ..... 14
External power supply for the DCF77 receiving aerial (in very minor applications only) ..... 14
Connecting a PEWETA GPS receiving aerial (optionally) ..... 14
Connecting a PEWETA GPS receiving aerial (optionally) ..... 15
Mounting, positioning and aligning the GPS receiving aerial/antenna ..... 15
Information about the time base ..... 16
Menu 1.5 Test of a continuous GPS radio reception ..... 16
Test of the latest GPS radio synchronization - "date" ..... 16
Test of the latest GPS radio synchronization - "time" ..... 16
Test of GPS radio reception quality ..... 16
Connecting one DCF77 receiving aerial (antenna) to two Master Clocks (Master/Submaster) ..... 17
Synchronising a PEWETA Submaster (2. Master Clock) by using the PEWETA DCFport24 pulse telegram ..... 17
Synchronising a PEWETA Master Clock by using the PEWETA Power over Ethernet NTP Client ..... 18
Connecting the slave clocks to the slave clock lines ..... 19
Connecting slave clocks with $12 / 24 \mathrm{~V}$ minute pulse movements (mode: minute pulse) ..... 19
Connecting slave clocks with 24 V minute/second pulse movements (mode: minute/second) ..... 19
Connecting slave clocks with 24 V second pulse with "creeping" minute (mode: seconds) ..... 20
Connecting PEWETA slave clocks with DCFport24 pulse telegram movements PW 761 (mode: DCFport24)21Connecting the Switch Circuits22
Connecting the RS232 Interface ..... 23
Connecting the Alarm Contact ..... 24
Connecting Option 1 and Option 2 ..... 24
Initiate the Operating System, Start-up Menu ..... 25
Menu 1: Master Clock ..... 25
Menu 1.1 Master Clock ..... 25
Master Clock in normal mode (in operation), time and date of the (clock) system ..... 25
Menu 1.2 System Time ..... 25
Setting the time of the clock system manually ..... 25
Menu 1.3 System Date ..... 26
Setting the system date manually ..... 26
Menu 1.4 Setting the time zone ..... 27
Time Zones pre-set (= pre-programmed) in the Master Clock. ..... 28
Menu 1.5 ..... 29
Checking the Time Reference ..... 29
Checking the continuity of DCF77 or GPS radio signal reception ..... 29
Checking the date ..... 29
Checking the time ..... 29
Checking the quality of the radio signal ..... 30
Menu 1.6 ..... 30
Altering the Hours Display (12/24 hrs mode) ..... 30
Menu 1.7 ..... 31
Altering the Date Display ..... 31
Menu 2: Slave Clock Lines ..... 32
Menu 2.1 ..... 32
Checking the current drain of slave clock lines ..... 32
Menu 2.2 ..... 33
Setting the time zone of one or several slave clock line(s) ..... 33
Menu 2.3 ..... 33
Setting the slave clock lines "on" and "off" ..... 33
Menu 2.4 ..... 34
Setting the pulse mode. ..... 34
Menu 2.5 ..... 35
Setting the update cycle ..... 35
Menu 2.6 ..... 35
Setting the Power Failure Reserve ..... 35
Menu 2.7 ..... 36
Adjusting the Time of Slave Clock Lines ..... 36
Menu 2.8 ..... 37
Setting Pulse Length/Pause ..... 37
Menu 3: Switching (Switch Channels) ..... 38
Menu 3.1 ..... 38
Status of Switch Channels ..... 38
Menu 3.2 ..... 38
General procedure for programming switch channels ..... 38
Entering a week's program ..... 39
Example 1: "pulse" program for a week ..... 39
Example 2: timed switching "on", once a week ..... 40
Example 3: timed switching "off", once a week ..... 40
Programming for a Year ..... 41
Example 3: timed switching "on", once a year ..... 41
Example 4: timed switching "off", once a year ..... 42
Example 5: Year program „locked" ..... 43
Example 6: Year program "unlock" ..... 44
Menu 3.2 ..... 45
Delete individual switch instructions (switch times) ..... 45
Menu 3.3 ..... 45
Delete all switch instructions (switch times) ..... 45
Menu 3.4 ..... 46
Manual setting of switch channels ("test"). ..... 46
Menu 4: Reports (= messages) of the System ..... 47
Menu 4.1 ..... 47
Reports (= messages) ..... 47
Menu 4.2 ..... 47
Edit on messages ..... 47
1) Short-circuit on slave clock line(s) ..... 48
2) Overload of single slave clock lines ..... 48
3) Overload of all slave clock lines (complete system) ..... 48
4) Power failure ..... 48
5) Low voltage ..... 49
6) Accu empty - system stopped ..... 49
Menu 5: System ..... 50
Menu 5.1 ..... 50
System ..... 50
Menu 5.2 ..... 50
Entering and changing the keyboard code ..... 50
Menu 5.3 ..... 51
Display language (= system language) ..... 51
Menu 5.4 ..... 52
Time zone, manual entry ..... 52
Menu 5.5 ..... 53
RS232 on/off ..... 53
Menu 5.6 ..... 54
Access code for the following service menus ..... 54
Menu 5.7 ..... 54
Initialize system ..... 54
Menu 5.8 ..... 55
DCF77 statistics ..... 55
Menu 5.9 ..... 55
Reports of internally measured tensions ..... 55
Menu 6: Options ..... 56
Menu 6.1 ..... 56
Option 1, for example: GPS ..... 56
Menu 7: Options ..... 56
Menu 7.1 ..... 56
Option 2, for example: RS485 ..... 56
Technical data ..... 57
Networkinterface (NTP) ..... 57

## Introduction

## General Remarks

This Master Clock provides a radio controlled time base with either automatic or manual change-over from winter to summer time (daylight saving) and vice versa. DCF77 (extra) or a GPS antenna (option) is connected.
The Master Clock is capable of operating and/or controlling secondary devices, such as:

- Analog slave clocks, with or without second hands, also as world time clock system (for operating second hands a Master Clock with minimum 2 slave clock lines is obligatory or $230 \mathrm{VAC} / 50 \mathrm{~Hz}$ for operating the second hands, depending on the type of slave clock movement)
- Digital slave clocks, with or without date, also as world time clock system
- Self-adjusting PEWETA DCFport24 telegram slave clocks, analog or digital
- Signalling devices, lighting systems etc. (Master Clock with switch channels optionally)
- IT systems via RS232 interface (programming software is an extra)


## Electronic Memory

Electronic memory and automatic update function will, upon return of mains power (e.g. after a mains outage), immediately readjust all connected clocks to current time.

## Radio Control (optionally), DCF77 antenna is an extra (item No. 03.925.111)

The CS2 caesium decay device, operated by the German Federal Institute for Physics and Technology, provides the official time base for the Federal Republic of Germany (and parts of some neighbouring countries) and transmits it through the time signal transmitter DCF77, operated by Deutsche Telecom and located at Mainflingen, near Frankfurt/M. ( $50^{\circ} 1^{\prime} \mathrm{N}, 09^{\circ} 00^{\prime} \mathrm{E}$ ) at 77.5 kHz (long wave/low frequency). The probable time deviation of the caesium decay device is less than 1 second in 2.6 million years only!

Note: The DCF77 aerial, if provided with the clock (optionally), will receive the time and date signal within a radius of approx. $2,000 \mathrm{~km}$ around Mainflingen and thus synchronise this Master Clock within this range only, perfect reception conditions provided. At continuous synchronisation the accuracy of the caesium decay device is therefore transferred to the Master Clock. If the Master Clock will be operated outside this DCF77 reception range we recommend the Master Clock's GPS-version (option suffix -95).

## Accuracy without Radio Control

Without DCF77 (or GPS) radio control signal the Master Clock's accuracy is reduced to $\pm 0.1$ second/24 h (measured at $25^{\circ} \mathrm{C}$ ambient temperature, tolerance to ambient temperature is $0^{\circ} . .40^{\circ} \mathrm{C}$.) Changeover of summer/wintertime (daylight saving) may programmed manually.

## Power Supply/operating voltage

Operating power for the Master Clock is 230 VAC/50 Hz mains.

## Protective Devices

The terminal area of the Master Clock is equipped with several protective devices, e.g. over-voltage protection, electronic circuit breakers and a fusible link.

## Slave Clock Line Connections

Each Master Clock can be equipped with up to four slave clock lines for operating up to 160 single sided slave clocks (mode: alternating minute pulse 24 V ). Power drain for the total of all lines or for individual lines only is $1,000 \mathrm{~mA}$ max. at 24 VDC line voltage. Pulse modes available are as follows:

- minute pulse (standard mode)
- half-minute pulse
- second pulse/second pulse with creeping minute
(In second pulse mode total line power is limited to 200 mA max.)
- PEWETA DCFport24 pulse telegram
(In DCFport24 mode total line power is limited to 250 mA max.)
If Master Clock is equipped with 2 or 4 slave clock lines a parallel operation of even different pulse modes is possible.

When the Master Clock reaches its limits of total power output, PEWETA pulse boosting amplifiers (type series 930) are needed for the extension of the master/slave clock system

## Power Outage Back-up Batteries

Optional power outage reserve, selectable for each individual slave clock line. A rechargeable NiCd battery, $24 \mathrm{~V} / 0.6$ Ah for 24 V lines or $12 \mathrm{~V} / 1.2 \mathrm{Ah}$ for 12 V lines, provides energy for continued (for a limited time period) operation of all connected clocks in case of a mains power outage (for a limited time period).

## Switch Channels (optionally), in that case we name it Signalling Master Clock

The Master Clock can be equipped with up to four switch channels/signalling contacts ( $2 \mathrm{~A} / 250 \mathrm{~V}$ ), each individually programmable for either a week- or a year-program, available to trigger optical and/or acoustic signal devices which, however, needs separate operating voltage (to be provided at site). Channels may be operated in mono- or bistable mode ( 600 timed events max). Manual triggering of each switch channel is possible.

## Multilingual Navigation

Multilingual navigation by 7 selectable languages: English, French, Spanish, Portuguese, German, Italian and Dutch.

## Data Transfer Interface

The Master Clock is equipped with a RS232 data transfer interface, RS485 optionally. Date and time information is disseminated from this interface to IT users (PCs, SPS etc) for synchronisation. Corresponding software (PEWETA item No. 05.920.000, which is an extra) is obligatory. Additionally, Master Clock software-updates may be uploaded through this interface, thus altering the functions of this Master Clock "in situ" (at site).

# Types of Master Clocks/Signalling Master Clocks, Item numbers, Extras, Options 

| Master Clock <br> Item No. | number of <br> slave clock <br> lines | number of <br> switch <br> channels | back-up <br> battery |
| :---: | :---: | :---: | :---: |
| 10.920 .010 | 1 | 0 | no |
| 10.920 .110 | 1 | 0 | yes |
| 10.920 .012 | 1 | 2 | no |
| 10.920 .112 | 1 | 2 | yes |
| 10.920 .014 | 1 | 4 | no |
| 10.920 .114 | 1 | 4 | yes |
| 10.920 .020 | 2 | 0 | no |
| 10.920 .120 | 2 | 0 | yes |
| 10.920 .022 | 2 | 2 | no |
| 10.920 .122 | 2 | 2 | yes |
| 10.920 .024 | 2 | 4 | no |
| 10.920 .124 | 2 | 4 | yes |
| 10.920 .040 | 4 | 0 | no |
| 10.920 .140 | 4 | 0 | yes |
| 10.920 .042 | 4 | 2 | no |
| 10.920 .142 | 4 | 2 | yes |
| 10.920 .044 | 4 | 4 | no |
| 10.920 .144 | 4 | 4 | yes |
| 10.920 .002 | 0 | 2 | no |
| 10.920 .102 | 0 | 2 | yes |
| 10.920 .004 | 0 | 4 | no |
| 10.920 .104 | 0 | 4 | yes |
|  |  |  |  |
|  |  | 2 | 2 |


| Extras |  |
| :---: | :---: |
| Item No. |  |
| 03.925 .111 | DCF77 antenna (IP grade 68) |
| 05.920 .000 | IT-synchronisation software |
| Options |  |
| Opt.-No. |  |
| -95 | GPS-version incl. GPS antenna <br> (IP grade 65) |
| -N.N. | RS485 data transfer interface |

## Safety Rules and Precautions

- Only qualified personnel is authorised to install/to operate the Master Clock and to open it in case of maintenance. Unauthorised opening and unqualified repair attempts may cause serious danger to the user. Guarantee will expire.
- This Master Clock is intended for the control of slave clocks only.
- Is the Master Clock equipped with switch channels the signalling and switch devices must not be charged with security functions.
- The connection to mains power must contain a positive separating device such as fusible links, circuit breakers or switches with a contact separation of 3 mm (1/8") per conductor.
- Maintenance work or wiring changes inside the Master Clock may only be performed after it is separated from mains.
- The Master Clock must only be connected to the mains voltage specified on the type label ( $230 \mathrm{VAC} / 50 \mathrm{~Hz}$ ).
- The mains connection must be solid 3 -core copper wire of $1.5 \mathrm{~mm}^{2}$ minimum cross section.
- Mains power wiring in the building must comply with VDE 0100 or equivalent national or international standards, according to DIN, ISO or EN.
- During electrical storms cables must neither be connected nor disconnected.
- All voltages connected to the Master Clock from outside must conform to SELV.
- Both primary and rechargeable batteries must only be replaced by original PEWETA-replacement units of the same type. Keep batteries and rechargeable batteries clear of fire! Danger of explosion!
- Batteries and rechargeable batteries must not be opened or damaged. The electrolytic liquid inside is poisonous and may cause damage to skin and eyes.
- Rechargeable batteries may cause injury through electric shock and high currents when short-circuited. Heed the following precautions when changing rechargeable batteries:
- Do not wear rings, watches or metal bracelets.
- Use tools with insulated handles only.
- Rechargeable batteries must never be short-circuited.
- Rechargeable batteries are classified waste and must be disposed accordingly.
- The Master Clock must be mounted to a solid surface, no vibrations must be transmitted to the Master Clock.
- The Master Clock must not be exposed to direct sunlight. The Master Clock must always be mounted inside buildings.
- The limits of tolerance to temperature $\left(0^{\circ} \mathrm{C} \ldots 4^{\circ} \mathrm{C}\right)$ and humidity must not be exceeded.
- The location for mounting the Master Clock must be chosen to avoid infiltration of dust or moisture.
- The Master Clock must be kept clear of sources of electro-magnetic interference, such as motors, electric magnets, choke coils etc.
- The Master Clock is not cleared for use in areas prone to explosions.


## Slave Clock Line Checklist

This table may be used to verify the slave clock lines resp. planning your slave clock network. All values "approx" only.

| line voltage | rated current | wire cross section | number of clocks | max length of cable |
| :---: | :---: | :---: | :---: | :---: |
| 12 V | 100 mA | 0.6 mm² | 10 | 226m |
|  | 400 mA |  | 40 | 56 m |
|  | 1600 mA |  | 160 | 13 m |
| 12 V | 100 mA | 0.8 mm² | 10 | 402m |
|  | 400 mA |  | 40 | 100 m |
|  | 1600 mA |  | 160 | 24 m |
| 12 V | 100 mA | $1.4 \mathrm{~mm}^{2}$ | 10 | 1234 m |
|  | 400 mA |  | 40 | 308m |
|  | 1600 mA |  | 160 | 76 m |
| 24 V | 60 mA | 0.6 mm² | 10 | 906 m |
|  | 360 mA |  | 60 | 150 m |
|  | 960 mA |  | 160 | 56m |
| 24 V | 60 mA | 0.8 mm ${ }^{2}$ | 10 | 1612 m |
|  | 360 mA |  | 60 | 268m |
|  | 1000 mA |  | 160 | 100m |
| 24 V |  | 1.4 mm ${ }^{2}$ | 10 | 1234 m |
|  | 360 mA |  | 60 | 802 m |
|  | 1000 mA |  | 160 | 308 m |

A 12 V slave clock movement/clockwork will show an interior resistance of $1,000 \Omega$ and draw 12 mA of current. A 24 V slave clock movement/clockwork will show an interior resistance of $4,000 \Omega$ and draw 6 mA of current.

## Mounting the Master Clock

1. It is suggested to make use of the template provided with these instructions, mark drilling spots on the wall.
2. Three $5 \times 40 \mathrm{~mm}$ screws and three S 8 dowels are supplied with the Master Clock.
3. Using an 8 mm or $5 / 16^{\prime \prime}$ bit, drill three holes. Push dowels in until they are flush with the wall surface.
4. Screw the top screw only into its dowel, leaving a $7 \mathrm{~mm}\left(5 / 16^{\prime \prime}\right)$ gap between dowel and screw head. Hook the lower notch in the bracket on the rear side of the Master Clock case over the screw head.
5. Unscrew the terminals cover of Master Clock and fix Master Clock to wall by using the two remaining screws.
6. Push ends of connecting cables through apertures in the case.
7. Finally place and screw terminals cover.


## Terminal connections for the full use of all features



1 Voltage selector ( $24 \mathrm{~V}|0 \mathrm{~V}| 12 \mathrm{~V}$ ) for slave clock line(s)
2 Mains power fuse: $5 \times 20 \mathrm{~mm}$ fusible link, $250 \mathrm{~V} / 500 \mathrm{~mA}$ delay (slow blow)
3 Mains power terminals $230 \mathrm{VAC} / 50 \mathrm{~Hz}$ (check with type label)
4 Switch channel terminals/connectors, none to 4 (optionally)
5 RS232 interface
6 DCF77-antenna terminal
7 Slave clock line terminals/connectors, none to 4 (optionally)
8 Alarm terminal
9 Jumper for changing alarm contact from "make" to "break" ("make" is standard)
10 Jumper to set DCF77-antenna power supply "internal" to "external" ("internal" is standard)
11 Terminals/connectors for additional optional features (if these features are enabled, an instruction sheet will be provided separately)
12 Reset button
13 Rechargeable back-up batteries (optionally) for power outage reserve of slave clock lines
14 LCD socket
15 Keyboard socket
16 LCD contrast adjustment
17 Socket for additional optional function circuit boards, for example GPS-version. If this socket is activated a separate instruction manual will be provided. Also see menu 6.1.
18 Socket for additional optional function circuit boards, for example RS485. If this socket is activated a separate instruction manual will be provided. Also see menu 6.2.

## Starting (setting up) the Master Clock, use of menus

Note: During start-up and initiation of software, use of menus and entering of information will be required. It is advisable to become familiar with the available menus and their use at this time. Please see structure of menu table:

## Structure of the menu table

| Master Clock | slave clock lines | switch channels | messages | system | option 1 | option 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.1 Master Clock | 2.1 lines | 3.1 switch channels | 4.1 messages | 5.1 system | 6.1 option 1 | 7.1 option 2 |
| 1.2 system time | 2.2 time zone | 3.2 channel | 4.2 messages | 5.2 change keycode |  |  |
| 1.3 system date | 2.3 status | 3.3 delete all |  | 5.3 language |  |  |
| 1.4 time zone | 2.4 mode | 3.4 manual |  | 5.4 time zone (man.) |  |  |
| 1.5 reference | 2.5 cycle |  |  | 5.5 RS232 |  |  |
| 1.6 hour mode | 2.6 battery |  |  | 5.6 access |  |  |
| 1.7 date mode | 2.7 slave time |  |  | 5.7 initialize |  |  |
|  | 2.8 pulse length |  |  | 5.8 DCF77 statistics |  |  |
|  |  |  |  | 5.9 measured values |  |  |

$($ man. $)=$ manual, by hand

If you are not familiar with the German language you should follow the instructions on page 50 of this manual first, call up menu 5.3 and change the Master Clock language (= system language) to English or 6 other languages, see page 6 (multilingual navigation).

Each individual menu may be accessed in two different ways:

## 1. Navigation by "Direct Dialling"

Example: For menu 1.2 (system time) press "menue" key, then numeral keys \#1 and \#2.


## 2. Navigation with "arrow" keys



Navigating with the arrow keys $\boldsymbol{4} \boldsymbol{\Delta} \boldsymbol{\nabla}$ : By pressing the "right"/"left" and "up"/"down" keys, you can reach any menu by selecting first its column, then its line. The procedure will be the same in case of sub-menus. Please try it now, you can't do something wrong! For menu structure please see above menu table.


The "edit" key has 2 functions: it is either used
a) to select the function shown in the LCD display or
b) to confirm data entered by preceded key action.
menue Any key action can, in case of error, be cancelled or interrupted at any time by pressing the "menue" key.

## Starting Operation

## Connecting mains power $230 \mathrm{VAC} / 50 \mathrm{~Hz}$

Unless otherwise specified on the type label, mains power is $230 \mathrm{VAC} / 50 \mathrm{~Hz}$. Tension relief on the power cable is to be provided by a conduit as part of the building's installation and responsibility. For safety reasons, connection of the protective earth (PE) conductor is mandatory, besides, undisturbed DCF77 or GPS radio reception will only be possible when PE is connected!

The Master Clock is not equipped with a positive mains separation device, this also is part of the building's installation and responsibility.

The fuse ( $5 \times 20 \mathrm{~mm}$ fusible link, $250 \mathrm{~V} / 500 \mathrm{~mA}$ delay) protects the power source by interrupting the L conductor in case of a short-circuit within the Master Clock. In this case an error flag "power failure" will be displayed in the front LCD display of the Master Clock and the red LED alarm will be "on"!

Connect mains wires to terminals $\mathrm{L}, \mathrm{N}$ and PE , as shown in the sketch below.


Important! Undisturbed, perfect DCF77 or GPS radio reception will only be possible when protective earth conductor (PE) is connected!

## Switching "on" the Master Clock (also see menu 1) and set-up

The Master Clock is switched "on" by setting the mode switch. When delivered, this switch is set in the central position (the Master Clock is switched "off"). Switching the Master Clock "on" also selects the slave clock line voltage. Sliding the switch to the left, slave clock line voltage will be set to 24 V (standard), sliding the switch to the right, slave clock line voltage will be 12 V . Check voltage directly at your slave clock movements, voltage must be identical! Unless 12 V slave clocks have already been installed, slave clock line voltage should be set to usual 24 V .

Switching the Master Clock "on" also activates the rechargeable batteries (optionally), enabling the Master Clock's full capabilities even without mains power (for a certain period of time only, depending on various circumstances, mainly on number of connected slave clocks).

Important! If the Master Clock will be disconnected from mains power for more than 24 hours, the mode switch must be set to the centre ("off") position. Otherwise the rechargeable batteries will be destroyed by "deep discharge"!


After the mode switch has been set to either 24 V or 12 V position, the LCD-display of the Master Clock will "wake up" and begin to show messages as follows:




Left shown information (blank squares) will be displayed for about 2 seconds only to test the function of the LCD display.

Left shown information will be displayed for about 1 second only, afterwards the Master Clock will shift into "normal mode" and displays time and date information.

Display in "normal mode", means "in operation". The Master Clock is now ready for set-up and/or for the individual adjustments and configurations, see following menus.

## Display in English language.

If you have changed the Master Clock language from German to English (menu 5.3), display will be as shown as left, when Master Clock is in operation.

The Master Clock is now operating and ready for configuration to operate the slave clocks and - if Master Clock is equipped accordingly - the switch channels (optionally).

## Connecting a PEWETA DCF77 receiving aerial/antenna

Connecting a GPS antenna to the Master Clock proceed to page 15.
Remember: DCF77 radio controlled time code telegrams can only be received in a radius of approx. 2,000 km round Frankfurt/Main! Outside this radius or at insufficient reception conditions we recommend GPS based version, option suffix -95.

The Master Clock is prepared for connecting a DCF77 receiving aerial, which is an extra (PEWETA item No. 03.925.111). If this receiving aerial is supplied with the Master Clock it has to be connected according to the sketch and table shown hereafter. The DCF77 antenna comes with a 5 m connecting wire. If no suitable position for mounting the receiving aerial can be found within this range, e.g. in heavily reinforced concrete buildings or buildings with a façade of corrugated metal sheets, the wire (type LIYCY $4 \times 0,25 \mathrm{sqmm}$ ) may be extended to $100 . . .150 \mathrm{~m}$.

If DCF77 receiving aerial is connected and orientated properly the Master Clock will automatically recognise the incoming DCF77 signal. Make sure that the jumper in the Master Clock above the DCF77 connecting terminals is to be set on pins $2 / 3$ to make $\mathrm{E} 2=0 \mathrm{~V}$.

type of wire: LIYCY $4 \times 0.25$ sqmm

| color of wire at <br> DCF77 antenna | connected to ...at <br> DCF77 antenna | connect to <br> terminal in <br> Master Clock |
| :---: | :---: | :---: |
| white | +UB (7-30 volt) | +V |
| green | DCF clock (Low active) | E 1 |
| brown | GND (0 volt) | 0 V |

## Mounting and aligning the DCF77 receiving aerial/antenna

The light grey plastic case (protection grade IP 68 for in- and outdoors use) of the DCF77 antenna is attached to one half of a frame-type stainless steel bracket which is flexibly connected to the other half by two screws. The opposite half of the bracket should be mounted to a wall by two $5 \times 40 \mathrm{~mm}$ screws and S 8 dowels supplied with the antenna kit.
For best possible reception the DCF77 antenna should be mounted in an area free of electromagnetic interference. Reception is best if either the lid or the bottom surface of the antenna case faces towards Frankfurt/Main ( $50^{\circ} 1^{\prime} \mathrm{N}, 09^{\circ} \mathrm{O}^{\prime} \mathrm{E}$ ). Reception of t he DCF77 signal is indicated by a red LED inside the case.
This LED should blink on and off once per second in a steady, stable second-rhythym/cicle, not flicker! At each $59^{\text {th }}$ second, no signal is transmitted (for reference reasons), so there should be a "one-second-off-interval" in the blinking sequence once a minute, which is correct.

Find the best mounting position for the DCF77 antenna where this "one-to-one-second" blink cycle is steady. Align the DCF77 antenna case by turning it on its bracket. If unsuccessful, try a different position. Once you have found a final position with good reception conditions, fix the antenna and do not move it anymore!

## External power supply for the DCF77 receiving aerial (in very minor applications only)

If the DCF77antenna has to be mounted more than 150 m from the Master Clock, the antenna may be connected to an external power supply of $7 \ldots 30 \mathrm{~V}$ DC, fed from the building's installation. In this case only the green and brown wires of the antenna cable are to be connected to terminals E1 and GND, respectively, at the Master Clock. The jumper above the terminals must be changed from pins $2 / 3$ to pins $1 / 2$. The external power supply is to be connected to +V and 0 V at the antenna unit, as shown in the table below.


| color of wire at <br> DCF antenna | connected to ...at <br> DCF77 antenna | connect to <br> terminal at <br> Master Clock | connect to <br> ..at external <br> power supply |
| :---: | :---: | :---: | :---: |
| white | + UB (7-30 Volt) |  | V (7-30 <br> V $)$ |
| green | DCF Takt (Low aktiv) | E1 |  |
| brown | GND (0 Volt) | E2 | 0 V |

## Connecting a PEWETA GPS receiving aerial (optionally)

If the PEWETA Master Clock is supplied in GPS-version (PEWETA item No. 10.920.xxx or 11.920.xxx with option suffix -95) the Master clock is already provided for the connection of the GPS receiving aerial by an integrated interface card, which has already been installed (see page 10, socket 17) and must not be removed (see menu 6.1).

The GPS receiving aerial itself will be supplied with a wall-plug adapter $230 \mathrm{VAC} / 50 \mathrm{~Hz}$ which has to be connected as shown in below table. The wire of the GPS receiving aerial has a length of approx. 10 m . If necessary it can be extended at site up to max. 20 m (wire type LIYCY $4 \times 0,25 \mathrm{sqmm}$ ). From 20 m to approx. 500 m additional converters for RS232/RS485 interfaces and vice versa are necessary and are to be provided at site.

## connection scheme at Master Clock:



| wire color <br> GPS antenna | function of GPS <br> antenna | connection to <br> Master Clock |
| :---: | :---: | :---: |
| yellow | TxD | E/A (2) |
| green | RxD | $\mathrm{E} / \mathrm{A}(1)$ |
| white | $+4,5$ Volt | $\mathrm{E} / \mathrm{A}(5)$ |
| brown | GND (0 Volt) | GND (3) |
| wire color <br> wall plug <br> adapter | function of GPS <br> antenna | connection to <br> Master Clock |
| white | $+4,5 \mathrm{~V}$ | E/A (5) |
| black | GND (0 Volt) | GND (6) |

## Mounting, positioning and aligning the GPS receiving aerial/antenna

The GPS antenna must in any case be mounted outdoors or next to windows, "free sight to the sky", to find the satellites. If sufficient mounting place has been found - see menu 1.5 , see page 16 - GPS antenna should not be moved anymore.

Note: Menu 1.5 of the PEWETA Master Clock can be used for testing the GPS radio control reception quality.

Important: The PEWETA Master Clock in standard will be supplied with time zone based on UTC, not on local time! Will this Master Clock be operated in a different time zone than UTC the corresponding local time zone must be selected in menu 1.4 and menu 2.2 by the operator. Will the corresponding time zone not be offered in menu 1.4 and 2.2 it can be defined in menu 5.4.

## Information about the time base

## Menu 1.5 Test of a continuous GPS radio reception

If the PEWETA Master Clock is supplied as GPS-version (option suffix -95) the Master Clock will be synchronized by the worldwide GPS radio signal. The information about the synchronization between Master Clock and the GPS radio receiving aerial/antenna and the quality of the radio reception is represented in this menu.
 A black square blinks alternately in place of the character you want to enter.

When "menue, 1,5 " is entered display shows:


A hook $(\sqrt{ })$ shows that the Master Clock has been successfully synchronized by the GPS radio signals within the last 24 hours.

A question mark (?) instead of the hook represents that the Master Clock has not been successfully synchronized within the last 24 hours. The current time and date runs on quartz basis only. (If the Master Clock is a non GPSversion, means Master Clock operates on "quartz basis" only, the sign of the question mark is correct). The course difference in the quartz mode is approx. $+/-0.1$ seconds/ 24 h . In case of summer/wintertime changeover in the country where the Master Clock is located the corresponding dates (start, ending) may be manually programmed (menu: 1.4, 2.2 and 5.4) by the local operator/user.

## Test of the latest GPS radio synchronization - "date"



If now arrow key is pressed, the submenu radio synchronization "date" is activated. The display shows the date at which the master clock has been synchronized latest. Note: The indicated value corresponds to UTCtime, not necessarily to local time!

## Test of the latest GPS radio synchronization - "time"



By pressing the arrow key - again the display shows the time at which the master clock has been synchronized latest. Note: The indicated value corresponds to UTCtime, not necessarily to local time!

## Test of GPS radio reception quality

By pressing the arrow key again the submenu "radio reception quality" is activated.
Black squares in the display show the quality of present GPS reception.

$\cdots$ - - \#wn good radio reception
-ㅡㅃ\#․ + = sufficient radio reception
$4 .-\cdots=$ bad radio reception, maybe no synchronization
$\cdots \quad+=$ GPS antenna not connected
Leave the menu by key combination "menue, 1,1 " or by arrow keys $\boldsymbol{4} \boldsymbol{\wedge} \boldsymbol{\nabla}$.

Connecting one DCF77 receiving aerial (antenna) to two Master Clocks (Master/Submaster)
If two PEWETA Master Clocks are connected to one DCF77 antenna, their power supplies need to be decoupled by means of two 1 N 4001 diodes, as shown below.


## Synchronising a PEWETA Submaster (2. Master Clock) by using the PEWETA DCFport24 pulse telegram <br> A second PEWETA Master Clock (Submaster) may be synchronised by using the DCFport24 slave clock line of

 the first PEWETA Master Clock. One slave clock line, e. g. line 1 of first Master Clock must be set to DCFport24, see menu 2.4. Terminal A of line 1 in first Master Clock must be wired to "E1" of second Master Clock and terminal B of line 1 to "E2" of the second Master Clock. The jumper above the DCF77 terminals in the Submaster must be set from position " $2 / 3$ " to " $1 / 2$ ", see scheme below.It is even possible to connect several Submaster-Clocks to the same slave clock line of the first Master Clock.


## Synchronising a PEWETA Master Clock by using the PEWETA Power over Ethernet NTP Client

The DCFport24 output of the "PEWETA Power over Ethernet NTP Client" has to be set to "DCFport" via telnet, see manual of the "PEWETA Power over Ethernet NTP Client". The jumper above the DCF77 terminals in the master clock must be set from position " $2 / 3$ " to " $1 / 2$ ", if not already done, see scheme below. Connect pin "A" to E 1 and pin "B" to E2 of the master clock, see scheme below.


## Connecting the slave clocks to the slave clock lines

Note: After having set the Master Clock to its operating status (see page 13) you will find following standard parameters in the corresponding menus:

| menu 2.2 | time zone: | CET/CEST |
| :--- | :--- | :--- |
| menu 2.3 | status: | Status off |
| menu 2.4 | mode: | minute |
| menu 2.5 | cycle: | 12 hours |
| menu 2.6 | battery: | on (if equipped with back-up batteries for the slave clock lines) |
| menu 2.7 | slave time: | arbitrary, random time |
| menu 2.8 | pulse length: | 1 second (1.0 s) |

Please decide whether you want to accept this parameter status, (especially menu 2.2 time zone!!), otherwise you have to change it, please see the corresponding menus on following pages.

## Connecting slave clocks with $12 / 24 \mathrm{~V}$ minute pulse movements (mode: minute pulse)

1. Wire (=connect) all minute pulse slave clocks you want to "address" to one slave clock line in parallel to the corresponding slave clock line terminals in the Master Clock. Decide whether all slave clocks of your master/slave clock system shall be connected (=addressed) to 1 slave clock line only or to 2,3 or 4 slave clock lines (if Master Clock is equipped accordingly).
2. Set each of your slave clocks of each line manually (by hand) to an arbitrarily selected but uniform (!) time, for example all slave clocks exactly on 12:00 hours position.
3. Provided pulse mode in menu 2.4 is set to "minutes"...
4. ..now exactly enter your arbitrarily selected slave clock time (in our example 12:00) in menu 2.7 (12:00:--).
5. Check again all parameters of above mentioned menus 2.2 to 2.8 are set according to your individual requirements.
6. Now set the line(s) to "status on" in menu 2.3. All correctly connected slave clocks of the corresponding line(s) will now move automatically to the present local time, provided you have selected one of the offered time zones/city names or manually entered the local time as well in menu 1.4 for the Master Clock and in menu 2.2 "manually" for your slave clock line(s).
7. If the one or other slave clock (or one side of a double sided clock) lags exactly 1 minute behind the set time after the move-up is completed, reverse polarity at the corresponding slave clock movement by inverting the two-pin connector and carefully manually (by hand) advance the slave clock by this 1 missing minute, see page 20. Also see installation instruction sheet for slave clock movement (coming with each PEWETA slave clock), item No. PEWETA B 602100-811, -821, -822, 825 and -826.

## Connecting slave clocks with 24 V minute/second pulse movements (mode: minute/second)

1. A Master Clock with minimum 2 slave clock line terminals is obligatory.
2. One line (for example line 1) has to be defined as "minutes" pulse mode in menu 2.4.
3. A second line (for example line 2) has to be defined as "seconds" pulse mode in menu 2.4.
4. Important: "60 seconds" has to be entered/selected for the required cycle of line 2 in menu 2.5.
5. Wire (=connect) all "minute" pulse mode connectors of the slave clock movements in parallel to the slave clock line terminals defined as "minute" pulse (in our example line 1).
6.) Wire/connect all "second" pulse mode connectors of the slave clock movements in parallel to the slave clock line terminals defined as "second" pulse mode (in our example line 2).
6. Set each of your slave clocks of this line manually (by hand) to an arbitrarily but uniform (!) time, for example all slave clocks exactly on 12:00:00 hours position. Again, make sure that all 3 hands (h/m/s) are exactly positioned on 12:00:00.
7. Provided pulse mode of line 1 is set to "minutes", pulse mode of line 2 is set to "seconds" in menu 2.4 and " 60 seconds" for line 2 is set in menu $2.5 \ldots$
8. ..now exactly enter your arbitrarily selected slave clock time (in our example 12:00:00) in menu 2.7: 12:00:-- for hour and minute in line 1, --:--:00 for the seconds in line 2.
9. Check again, all parameters of above mentioned menus 2.2 to 2.8 are set according to your individual requirements.
10. Now set the lines (in our example first line 1, then line 2 ) to "status on" in menu 2.3 status. All correctly connected slave clocks of the corresponding line(s) will now move automatically to the present local time, provided you have selected one of the offered time zones/city names or manually entered the local time as well in menu 1.4 for the Master Clock and in menu 2.2 "manually" for your slave clock line(s).
11. If at the one or other slave clock (or one side of a double sided clock) the minute hand lags exactly 1 minute and/or the second hand lags exactly 1 second behind the set time after the move-up is completed, reverse polarity at the corresponding slave clock movement(s) either

- by inverting the corresponding "minute" or "second" two-pin connector or
- by drawing the corresponding minute or second connector from position AB to BA (or vice-versa), see below pictures. Manually (by hand) advance the slave clock by this missing 1 minute resp. 1 second. For additional information please also see corresponding installation instruction sheet PEWETA for slave clock movement (coming with each slave clock), for example PEWETA item No. 183.042, 183.224.



## Connecting slave clocks with 24 V second pulse with "creeping" minute (mode: seconds)

1. One slave clock line of your choice has to be defined as "seconds" pulse mode in menu 2.4.
2. In menu 2.5 cycles " 12 hrs." has to be entered/selected for this selected line.
3. Wire (=connect) all "seconds" pulse mode connectors of the slave clock movement to this slave clock line.
4. Set each of your slave clocks of this line manually (by hand) to an arbitrarily selected but uniform (!) time. Note: Ideally the selected slave clock time should be shortly before the actual/present time (= time of the Master Clock), as with a too big (=long) time difference it may happen that due to construction this type of slave clock movements will "wait" for a period of approx. 22 hours before clocks will be adjusted!
5. Now exactly enter your arbitrarily selected slave clock time (hh:mm:ss) in menu 2.7.
6. Set the line to "status on" in menu 2.3 status. All correctly connected slave clocks of this line will now move automatically to the present local time (=time of the Master Clock), provided you have selected one of the offered time zones/city names or manually entered the local time as well in menu 1.4 for the Master Clock and in menu 2.2 "manually" for this slave clock line.
7. If the one or other slave clock (or one side of a double sided clock) lags exactly 1 second behind the set time after the move-up is completed, reverse polarity at the corresponding slave clock movement either by inverting the corresponding connector (or according to movement construction of other movement brands manufacturers) and manually (by hand) advance the slave clock by this missing 1 second. For additional information please also see installation instruction sheet for slave clock movement (coming with each PEWETA slave clock).

## Connecting PEWETA slave clocks with DCFport24 pulse telegram movements PW 761 (mode: DCFport24)

Important: Position of hands ( $\mathrm{h} / \mathrm{m} / \mathrm{s}$ ) of all PEWETA DCFport24 pulse telegram slave clocks, whether connected or not, have to be ignored! They will be adjusted automatically!

1. Wire (=connect) all DCFport24 pulse telegram slave clocks you want to "address" to one slave clock line in parallel to the corresponding slave clock line terminals in the Master Clock, for example line 1.
2. Do not manipulate arbitrary position of hands of the slave clocks!
3. Provided pulse mode in menu 2.4 is set to "DCFport24"...
4. ...now set the line to "status on" in menu 2.3.
5. All hands ( $\mathrm{h} / \mathrm{m} / \mathrm{s}$ ) of correctly connected DCFport24 slave clocks will first move automatically to 12:00:00 position, then automatically to the present local time, provided you have selected one of the offered time zones/city names or manually entered the local time as well in menu 1.4 for the Master Clock and in menu 2.2 "manually" for this slave clock line.


Note: Above shown connecting scheme is just an example. Each of above indicated pulse mode can be selected in menu 2.4 for each individual slave clock line. Remember: Only one pulse mode per each slave clock line.

## Connecting the Switch Circuits

Up to four (optional) switch circuits can be utilised to trigger visual and/or acoustic signalling devices or to switch on and/or off various equipment such as ventilation, heating, lighting, sirens etc..

All switch points are free-floating. Each (on/off) switch point can carry up to 250 VAC/2 A.
Devices to be switched by these contacts must have their own power supplies.
Table of abbreviations:
K $1=$ switch circuit $1 ; \mathrm{K} 2=$ switch circuit $2 ; \mathrm{K} 3=$ switch circuit $3 ; \mathrm{K} 4=$ switch circuit 4.
A = normally open (NO) contact
$\mathrm{M}=$ common (C) contact
$R=$ normally closed (NC) contact

- $A$ and $M$ form a making contact;
- $M$ and $R$ form a breaking contact.



## Connecting the RS232 Interface

The RS232 interface of the Master Clock may be connected to customer's data processing device equipped with a similar interface port.

Note: $\quad$ "RS232 on" must be set in menu 5.5 system.
The adapter cable is to be connected as follows:
Rx = receive data $\longrightarrow$ wire to pin 3 of a female 9-pin-sub-D connector
Tx = transmit data $\longrightarrow$ wire to pin 2 of a female 9-pin-sub-D connector
GND $=$ ground $\longrightarrow$ wire to pin 5 of a female 9-pin-sub-D connector


## Transmitting format/transmission protocol

The RS232 interface transmitting format is defined as follows:

```
8 bits per character
no parity
1 stop bit
9,600 baud
```

The transmission protocol (time protocol) is transmitted once per second and contains the complete time and date data including day-of-the-week as ASCII code in the following format:

```
time protocol transmitted: hh:mm:ss w dd.mm.yyCR
for example:
16:47:04 1 03.10.04|
```

$\mathrm{hh}, \mathrm{mm}$, ss are place holders for current time (always transmitted in 24-hour format)
hh = hour from 00 to 23
$\mathrm{mm}=$ minute from 00 to 59
ss = second from 00 to 59
hour, minute and second are separated by colons (:)
one space (binary value "32")
w is place holder for day-of-the-week, $1=$ Monday to $7=$ Sunday
one space (binary value "32")
dd, mm, yy are place holders for day-in month, month and year
dd = day-in-month from 01 to 31
$\mathrm{mm}=$ month from $01=$ January to $12=$ December
yy = year-in-century from 00 to 99
Day, month and year are separated by periods (.)
$\mathrm{CR}=$ carriage return ( $\mathbb{I})$ (binary value 13) is transmitted to signify end of message.
(This character may not be displayed by some terminal programs!)

## Connecting the Alarm Contact

The Master Clock is equipped with an alarm contact for onward transmission of malfunction reports.
Above the "AL" terminal there is a three-pin "jumper" terminal:
With the jumper in the right-hand $(=\overline{23})$ position, the "AL" terminal is a "making" contact $\overline{(2 \mathbf{3}}$ is standard).
Moving the jumper to the left-hand $(=\overline{12})$ position the "AL" terminal is a "breaking" contact.
The "AL" terminal's contact points are free-floating, maximum permissible load is $30 \mathrm{~V} / 0.5 \mathrm{~A}$.


## Connecting Option 1 and Option 2

Option 1 may be configurated as GPS-version, option 2 may be configurated as RS485 interface version. If assigned (special version) please see corresponding menus, for example 6.1 and/or 7.1 and separate installation manual, coming with the Master Clock.


## Initiate the Operating System, Start-up Menu

## Menu 1: Master Clock

When power supply $230 \mathrm{VAC} / 50 \mathrm{~Hz}$ is connected and the mode selection switch is either set to 12 or 24 V slave
 Clock") is shown, indicating the Master Clock time and date (=system time and date) in normal mode, means "in operation". The display will start counting the seconds.

Important: If the Master Clock is supplied including a separate DCF77 receiver (see page 14) or as GPS-version (see page 15) for radio controlled time basis the exact current (=local) time will automatically set up, provided the DCF77 or GPS receiver has been correctly connected and orientated! In this case please allow approx. 5 minutes for the Master Clock to assume exact current time after final orientation of DCF77 resp. GPS receiver.

When DCF77 or GPS radio controlled time has been established successfully, you may skip directly to menu 2.1 in this set-up routine.

Note: If DCF77 (approx. 2,000 km around Frankfurt/Main!) resp. GPS (worldwide) radio reception is disturbed or receipt is presently impossible follow menus 1.2 and 1.3 to set system time to current (= local) time manually.

## Menu 1.1 Master Clock

## Master Clock in normal mode (in operation), time and date of the (clock) system

Whilst Master Clock is in operation menu 1.1 will be displayed at any time. In this menu 1.1 system time and date can only be read, not changed.



## Menu 1.2 System Time

## Setting the time of the clock system manually

Select menu 1.2 by either using the arrow keys $\boldsymbol{\Delta \nabla \nabla}$ or by directly dialling key combination "menue, 1, 2". A black square blinks alternately in place of the character you want to enter.

After input by key combination "menue, 1, 2" display shows:


Press "edit"...

...to manually enter the current time in the blinking black square by pressing number keys " $0 \ldots 9$ " as appropriate.


Should "edit" have inadvertently been pressed and the first digit blinks, press key combination "menue, 1, 1" to cancel without change.
When satisfactory entered the current time, press "edit" to confirm. The Master Clock will start keeping time with quartz accuracy (+/- $0.1 \mathrm{~s} / 24 \mathrm{~h})$.

## Menu 1.3 System Date

## Setting the system date manually

Select menu 1.3 by either using the arrow keys $4 \Delta \nabla>$ or by directly dialling key combination "menue, 1, 3". A black square blinks alternately in place of the character you want to enter.

When "menue, 1,3 " is entered display shows:



...to enter the current date in the blinking black square by pressing number keys " $0 \ldots 9$ " as appropriate.

Should "edit" have inadvertently been pressed and the first digit blinks, press "menue, 1, 1 " to cancel without change.

When satisfactory entered the current date, press "edit" to confirm. Date will be kept current from now on.

## Menu 1.4 Setting the time zone

In this menu the time zone of the Master Clock can be selected. CET/CEST is standard.

Select menu 1.4 by either using the arrow keys $\boldsymbol{4 \nabla \nabla}$ or by directly dialling key combination "menue, 1, 4." A black square blinks alternately in place of the character you want to enter.

When "menue, 1,4 " is entered display shows:

> I: 4 MEEte ETए
> time

Press "edit" and display will change to various city names...

```
I:4 MEtev Elएe
time zण"#मणण\
```

Use arrow keys $\boldsymbol{\Delta} \boldsymbol{\nabla}$ to select your desired time zone, represented by the corresponding city names, and confirm with "edit".

In addition to CET/CEST*, CET*, CEST* and UTC/ZULU* time, $\mathbf{2 2}$ time zones, represented by city names, are already pre-set in the Master Clock with their corresponding UTC offsets (from West to East): Anchorage, Los Angeles, Denver, Chicago, San Salvador, New York, Panama, Caracas, Buenos Aires, Trinidade, London, Athens, Riad, Moscow, Abu Dhabi, Tashkent, New Delhi, Dhaka, Bangkok, Manila, Tokyo and Sydney.

Example 1: Will the Master Clock be installed in France: select "CET/CEST ".
Example 2: Will the Master Clock be installed in England: select "London".
Example 3: Will the Master Clock be installed in Tunesia (presently no summer/wintertime change-over): select "CET".

Important: Should the Master Clock be installed in a country outside any of the pre-set time zones, enter "manually" here in menu 1.4 and define your individual time zone in menu 5.4 (see page 52). In menu 2.4 "manually" has to be defined for each slave clock line (see page 32).

- CET/CEST* $=$ Central European Time/Central European Summer Time

Offset: CET = UTC: +1:00 hour;
Offset: CEST = UTC: +2:00 hour;
Change-over from winter to summer time: beginning: = last Sunday in March, every year. end: = last Sunday in October, every year.
Summer time is local time $+1: 00$ hour.

- UTC* $=$ Universal Time Coordinated is the local time of longitude $0^{\circ}$. It is equivalent to astronomical winter time in Britain and differs slightly ( $\sim 0,9$ sec.) from TAI (International Atomic Time), corrected by the "leap second". UTC has replaced GMT as international standard.

Offset: UTC = CET - 1:00 hour;
Offset: UTC = CEST - 2:00 hours.
There is no summer time in UTC.

- Zulu* $=$ is a NATO (or any other) military time base, equivalent to UTC. ( $Z=Z$ Zero $=0$ ).


## Time Zones pre-set (= pre-programmed) in the Master Clock

Anchorage (USA)
Los Angeles (USA)
Denver (USA)
Chicago (USA)
San Salvador (EI Salvad
New York (USA)
Panama (Panama)
Caracas (Venezuela)
Buenos Aires (Argentina)
Trindade
London (England)
Istanbul (Turkey)
Riad (Saudi Arabia)
Moscow (Russia)
Abu Dhabi (U.A.E.)
Tashkent (Uzbekistan)
New Delhi (India)
Dhaka (Bangladesh)
Bangkok (Thailand)
Shanghai (China)
Tokyo (Japan)
Sydney (Australia)

UTC offset: - 9:00 h.
UTC offset: - 8:00 h.

UTC offset: - 7:00 h.

UTC offset: - 6:00 h.

UTC offset: - 6:00 h.
UTC offset: - 5:00 h.
UTC offset: - 5:00 h.
UTC offset: - 4:30 h.
UTC offset: - 3:00 h.

UTC offset: - 2:00 h.
UTC offset: $\pm 0: 00 \mathrm{~h}$.
UTC offset: + 2:00 h.
UTC offset: + 3:00 h.
UTC offset: + 3:00 h
UTC offset: + 4:00 h
UTC offset: + 5:00 h.
UTC offset: + 5:30 h.
UTC offset: + 6:00 h.
UTC offset: + 7:00 h
UTC offset: + 8:00 h
UTC offset: + 9:00 h
UTC offset: +10:00 h

Begin of daylight-saving time:
End of daylight-saving time:
No daylight-saving time.
Begin of daylight-saving time:
End of daylight-saving time:
No daylight-saving time. No daylight-saving time. Begin of daylight-saving time: End of daylight-saving time: No daylight-saving time. Daylight-saving time: Daylight-saving time: No daylight-saving time. Daylight-saving time: No daylight-saving time. No daylight-saving time.
Begin of daylight-saving time: End of daylight-saving time:

Second Sunday in March. First Sunday in November. Second Sunday in March. First Sunday in November. Second Sunday in March. First Sunday in November. Second Sunday in March. First Sunday in November.

Second Sunday in March. First Sunday in November.

Third Sunday in October. Third Sunday in March.

Same as CET/CEST. Same as CET/CEST.

Same as CET/CEST.

Dates are without obligation and subject to change by national authorities. Status June 2010.


## Menu 1.5

## Checking the Time Reference

Will the Master Clock be synchronised to current time and date by an optional DCF77 (reception 2,000 km round Frankfurt/Main only) or by an optional GPS (worldwide reception) radio receiving aerial this menu offers options to check the radio synchronisation of time and date and the reception quality of the received radio signal.

```
Important! GPS antenna should be installed outdoors (when indoors: close to windows), "free sight to the sky",
    to find the satellites!
```


## Checking the continuity of DCF77 or GPS radio signal reception

Select menu 1.5 by either using the arrow keys $4 \Delta \nabla \nabla$ or by directly dialling "menue, 1, 5". A black square blinks alternately in place of the character you want to enter.

After input by key combination "menue, 1, 5" display shows:


A check mark $(\checkmark)$ will indicate that synchronisation by either DCF77 or GPS radio signal has been achieved during the past 24 hours.

Should a question mark (?) be displayed instead of a check mark ( $\checkmark$ ) the DCF77 or GPS receiving aerial must be realigned, as the Master Clock has not achieved synchronisation during the past 24 hours and is only operating in quartz clock accuracy. If the Master Clock is intentionally operated as a quartz clock only, in this case the question mark will be the "okay-" indication. Accuracy in quartz mode is $\pm 0.1 \mathrm{~s}$ within 24 hours. In case of change-over from summer to winter time and vice versa the corresponding dates have to be entered in menu 1.4 resp. menu 5.4. Corresponding time zone for the Master Clock (system time) must be entered in menu 1.4 and for the corresponding slave clock lines (slave clock time) in menu 2.2. Will the required time zone not be offered in menu 1.4 the required time zone may be manually entered in menu 5.4 "manuell".

## Checking the date

If the Master Clock is in either DCF77 or GPS radio control mode, pressing the arrow key will call a sub-menu to show at what date the Master Clock achieved DCF77 or GPS*) radio time synchronisation latest.


Date when latest DCF77 or GPS*) radio time synchronisation was achieved.

## Checking the time

Pressing the arrow key again will call the sub-menu to show the time of the latest DCF77 or GPS*) radio time synchronisation.


Time when latest DCF77 or GPS*) radio time
synchronisation was achieved.
*) Note: In case of GPS radio control the indicated date and time information is based on UTC-time!

## Checking the quality of the radio signal

Pressing the arrow key once more will call the sub－menu radio reception quality．The number of black squares shown in the display represents the quality of radio reception．This can be used to align the DCF77 resp．GPS antenna．

$$
\begin{aligned}
& \text { स }
\end{aligned}
$$

in case of DCF77 radio control：

－霟＋＝adequate radio reception
－＋＋＝poor radio reception，maybe no synchronization
$+=$ no radio reception，no DCF antenna connected

The operation can be interrupted at any time or leave this menu by pressing keys＂menue， 1,1 ＂or by using the arrow keys．

in case of GPS radio control：
－清嘈＋＝good radio reception
（more than 3 satellites will be received）

（3 satellites will be received）
－霏＋＝poor radio reception，maybe no synchronization
（less than 3 satellites）
－$\quad+=$ no radio reception，no GPS antenna connected

## Menu 1.6

## Altering the Hours Display（12／24 hrs mode）

Hours may be displayed in 12－hours mode（with suffix＂a＂for AM and＂p＂for PM）or 24－hours mode． 24－hours mode is standard．
 A black square blinks alternately in place of the character you want to enter．

When＂menue， 1,6 ＂is entered display shows：


Press＂edit＂to change display to．．．

．．．this setting．Pressing the $\mathbf{\Delta}$ key，the 12－hours mode
can be selected．Confirm with＂edit＂．

Example：standard mode 16：33：00 24－hour－mode changed mode 04：33：00p 12－hour－mode

The operation can be interrupted at any time or leave this menu by key combination＂menue，1，1＂．

## Menu 1.7

## Altering the Date Display

The display mode for the date can be either the sequence day－month－year or month－day－year．
Day－month－year mode is standard．
Select menu 1.7 by either using the arrow keys $\boldsymbol{\wedge \nabla \nabla}$ or by directly dialling key combination＂menue，1，7＂． A black square blinks alternately in place of the character you want to enter．

When＂menue， 1,7 ＂is entered display shows：

$$
\begin{aligned}
& \text { ! : } \\
& \text { लाए } \\
& \text { 女! }
\end{aligned}
$$

Press＂edit＂to change display to．．．

女！
．．．this setting．Pressing the $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ key，the date display mode can be selected．Confirm with＂edit＂．

Example：standard mode 16.07 .10 day．month．year mode changed mode 07／16／10 month／day／year mode

The operation can be interrupted at any time or leave this menu by key combination＂menue，1，1＂．

## Menu 2: Slave Clock Lines

## Menu 2.1

## Checking the current drain of slave clock lines

Current drain is displayed in amperes (A). Total current available is 1 A max. at 24 V line voltage or 2 A max. at 12 V . Actual current drain depends on line voltage either $24 \mathrm{~V}(1 \mathrm{~A})$ or $12 \mathrm{~V}(2 \mathrm{~A})$ and on the number of slave clocks per line (if Master Clock is equipped with only one line, only one line will be displayed).
 A black square blinks alternately in place of the character you want to enter.

When "menue, 2,1 " is entered display shows:


The measured electrical power values are displayed in ampere (A) per line.

Load carrying capacity of the slave clock lines in the 24 V mode:

- Minute pulses: Each line can carry a maximum current of 1 A . One to four lines may be loaded to 1 A maximum in total.
- Half minute pulses: Each line can carry a maximum current of 1 A . One to four lines may be loaded to 1 A maximum in total.
- Second pulses: One line may be loaded to a maximum of 0.2 A only. One to max. four lines may be loaded to a maximum of 0.2 A in total only. The difference to the load of 1 A maximum in total may be filled up by minute pulse slave clocks, minimum 2 lines provided ("one mode per line").
- DCFport24 telegrams: One line may be loaded to a maximum of 0.25 A only. One to max. four lines may be loaded to a maximum of 0.25 A in total only. The difference to the load of 1 A maximum in total may be filled up by minute pulse slave clocks, minimum 2 lines provided ("one mode per line").

At 12 V line voltage, twice the current as stated above may be drawn. Each individual line is, however, limited to a maximum of 0.5 A .

## Power drain of different PEWETA slave clockworks/movements

Minute pulse slave clockwork/movement
Half-minute pulse slave clockwork/movement
Minute/second pulse slave clockwork/movement
second pulse slave clockwork/movement
(creeping minute)
DCFport24 slave clockwork/movement

6 mA at $24 \mathrm{~V}, 12 \mathrm{~mA}$ at 12 V line voltage
6 mA at $24 \mathrm{~V}, 12 \mathrm{~mA}$ at 12 V line voltage
6 mA at $24 \mathrm{~V}, 12 \mathrm{~mA}$ at 12 V line voltage for "minutes line" 6 mA at $24 \mathrm{~V}, 12 \mathrm{~mA}$ at 12 V line voltage for "seconds line"

6 mA at $24 \mathrm{~V}, 12 \mathrm{~mA}$ at 12 V line voltage

10 mA at $24 \mathrm{~V}, 10 \mathrm{~mA}$ at 12 V line voltage
(Coil resistance of the slave clockworks/movements: at 24 V line voltage $=4 \mathrm{k} \Omega$, at 12 V line voltage $=1 \mathrm{k} \Omega$.)

## Menu 2.2

## Setting the time zone of one or several slave clock line(s)

This menu is used to set time zones of slave clock line(s). CET/CEST is standard.
 A black square blinks alternately in place of the character you want to enter.

When "menue, 2, 2" is entered display shows:


First, select the line by using number keys \#1...\#4. Press "edit" to get to the time zones...
...represented by 22 international city names.
Press arrow key $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ repeatedly to select desired time zone, press "edit" to confirm.

Following 22 time zones, represented by international city names are pre-set (=pre-programmed) in the Master Clock already with their corresponding UTC offsets, until year 2084, without obligation and subject to change (from West to East): Anchorage, Los Angeles, Denver, Chicago, San Salvador, New York, Panama, Caracas, Buenos Aires, Trindade, London, Athens, Riad, Moscow, Abu Dhabi,Tashkent, New Delhi, Dhaka, Bangkok, Manila, Tokyo and Sydney.
Also time zones CET/CEST, CET, CEST, UTC (= ZULU) are pre-set as well as the possibility to manually enter an individually selected time zone. Additional information please see page 52.

Note: For world time clocks each slave clock line may be set to a different time zone.

Important! If a time zone is not offered for selection, it may be manually defined in menu 5.4.

## Menu 2.3

## Setting the slave clock lines "on" and "off"

This menu is used to set the slave clock lines "on" or "off". "off" is standard.

A black square blinks alternately in place of the character you want to enter.
When "menue, 2, 3 " is entered display shows:


```
#.+.%+!%%
```



First, select the line by using number keys \#1... \#4.
Confirm with "edit" to get to...
...the status "on" or "off". Either $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ will be displayed. Press arrow key $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ to change status.
Confirm with "edit". Will status be changed from "off" to "on", all correctly connected slave clocks of this line will automatically adjust to the current time (= time of the Master Clock = system time).

Important! When status is changed from "off" to "on" all slave clocks will automatically adjust to current time (=systemtime).

## Menu 2.4

## Setting the pulse mode

This menu is used to set the pulse mode of each slave clock line to either minutes, half-minutes or seconds pulses or to DCFport24 pulse telegram.

Select menu 2.4 by either using the arrow keys $4 \boldsymbol{\wedge} \nabla$ or by directly dialling the key combination "menue, 2, 4". A black square blinks alternately in place of the character you want to enter.

When "menue, 2, 4" is entered display shows:

| 2 at |
| :--- |
| mode | mine 1

mutes

First, select the line you want to set by using number keys \#1...\#4. Press "edit" to select the required pulse mode.


Left-hand of the pulse mode currently set, an $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ arrow will appear. Use arrow keys $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ to set the desired mode. Confirm with "edit".
pulse modes available:
minutes = alternating polarity pulses at 1 minute intervals to operate/control minute pulse slave clocks without second hands. "minutes" is standard.
$\mathbf{1 / 2}$-minutes $=$ alternating polarity pulses at $1 / 2$-minute intervals to operate/control half-minute pulse slave clocks.

Seconds = alternating polarity pulses at 1 second intervals to operate the second hands of so-called minute/second pulse slave clocks. Note: Additionally, minute pulses from a separate line are needed to operate the hour and minute hands of these minute/second pulse slave clocks.

DCFport24 = positive polarity DCF77 pulse telegram to operate PEWETA DCFport24 slave clocks.

Note! Simultaneous operation of choice of a.m. pulse modes is possible, provided Master Clock is equipped with minimum 2 slave clock lines ("one mode per line").

## Menu 2.5

## Setting the update cycle

This menu is used to set the updating cycle of each slave clock line.
Select menu 2.5 by either using the arrow keys $\boldsymbol{4 \Delta \nabla}$ or by directly dialling key combination "menue, 2, 5". A black square blinks alternately in place of the character you want to enter.

When "menue, 2, 5" is entered display shows:
First, select the line you want to set by using number keys
 \#1...\#4. Press "edit" to select the cycle.


Left-hand of the cycle mode currently set, an $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ arrow will appear. Using arrow keys $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ to set the desired cycle. Confirm with "edit".

Select one of following cycles:
60 sec. $=$ for all slave clocks with second hands in minute/second pulse analog slave clocks
12 hrs. = for all analog slave clocks controlled by minute- or half-minute pulses, also for second pulse slave clocks with "creeping" minute hands. "12 hrs" is standard.
24 hrs . = for all LED/LCD digital slave clocks with 24-hour displays
1 week = for all LED/LCD digital slave clocks with additional date displays
[AUTO] = for all analog and digital DCFport24 slave clocks (is set automatically when line is set to DCFport24, can not be altered)

## Menu 2.6

## Setting the Power Failure Reserve

This menu is used to set the power failure reserve battery/back-up battery (if Master Clock is equipped accordingly) to "on" or "off" for slave clock lines. "On" is standard.
 A black square blinks alternately in place of the character you want to enter.

When "menue, 2, 6" is entered the display shows:


Choose the desired line by using number keys \#1...\#4.
Then press "edit"...

```
##:#
```


... to see an arrow left to status "on".
Press arrow key $\boldsymbol{\nabla}$ to set battery "on" for this line. Press arrow key $\mathbf{\Delta}$ to set battery "off" for this line. Press "edit" to confirm.

In case of power failure a back-up battery in the Master Clock (if equipped) will keep the slave clock lines with reserve set "on" going. If the power outage is of longer duration and battery voltage drops below 21 V in 24 V mode (resp. below 10 V in 12 V mode) the lines will be turned off, all slave clocks will stop.

In Master Clocks with more than one connected slave clock line, the power failure reserve time of one line can be extended by setting another line's power outage reserve to "off".

Important! When mains power is restored all slave clock lines connected will automatically be updated to current time.

## Menu 2.7

## Adjusting the Time of Slave Clock Lines

This menu is used to adjust each slave clock line to current local time (or world times in a world time clock system) at start-up or after malfunctions.

Important 1: Check and make sure that corresponding slave clock line(s) have been switched "off" in menu 2.3. "Off" is standard (=pre-set) when clock is been delivered.

Important 2: Decide whether you want to connect and control/operate either
a) conventional analog slave clocks
(pulse mode: either minute or minute/second alternating pulses $12 / 24 \mathrm{~V}$, PEWETA slave clock item numbers start with 71.., 72.., 73.. or 74..) or
b) PEWETA DCFport24 pulse telegram slave clocks
(pulse mode DCFport24, PEWETA slave clock item numbers either start with 81.. or $83 .$. for digital clocks) or
c) a combination out of above mentioned pulse modes
(Master Clock with minimum 2 slave clock lines is obligatory, "one mode per line").

## Important 3:

In case of a) please follow the instructions described under Important 4 and following text.
In case of b) please follow the instructions described under DCFport24 slave clocks (page 37)
In case of c) please follow the instructions described under a) and b) individually for each line/pulse mode.
Important 4: Please make sure that all analog slave clocks, operated by either alternating minute pulses $12 / 24 \mathrm{~V}$ or by alternating minute/second pulses $12 / 24 \mathrm{~V}$, show an arbitrarily but uniform (!) time. You may adjust this arbitrarily but uniform time by the small adjusting wheels directly at each slave clock movement. This does not apply to DCFport24 slave clocks! See page 21.

Select menu 2.7 by either using the arrow keys $4 \boldsymbol{\Delta \nabla}$ or by directly dialling key combination "menue, 2, 7". A black square blinks alternately in place of the character you want to enter.

When "menue, 2, 7 " is entered the display shows:


Select the line to be adjusted by using number keys \#1...\#4. The display shows an arbitrarily slave time.
Confirm with "edit".

Now enter the manually set uniform (!) time of the slave clocks connected to this line by using number keys \#1...\#9.
Confirm with "edit".

Important 5: Now select menu 2.3 (lines "on"/"off") by using the corresponding keys and start the line you just entered the uniform time, for example line 1 . Switch line 1 "on".

All correctly connected slave clocks of this line will automatically adjust to the correct local time. Have the slave clocks been addressed to more than 1 slave clock line (Master Clock with minimum 2 slave clock lines is obligatory) proceed for each slave clock line separately, exactly as described above, resp. as follows on page 35 in case of different pulse mode(s).

Digital slave clocks with date:

1) Select " 1 week" in menu 2.5 (cycles).
2) Here in menu 2.7 you have to enter the current day of the week (1=Monday, 7=Sunday). Enter sub-menu with arrow key , confirm with "edit" and select current weekday. Confirm with "edit".
3) Start corresponding slave clock line(s) in menu 2.3.

## DCFport24 pulse telegram analog slave clocks

1) Correctly connect all DCFport24 slave clocks to that slave clock line(s) which you defined as DCFport24 in menu 2.4.
2) Start corresponding slave clock line(s) in menu 2.3.
3) All correctly connected DCFport24 analoge slave clocks will automatically adjust to current time, first to 12 o'clock position, then to current time.

## Menu 2.8

## Setting Pulse Length/Pause

This menu is used to set the pulse length of minutes, half-minutes and seconds pulses.
Important: There is no need and no means to change pulse length of the DCFport24 pulse telegram!

Select menu 2.8 by either using the arrow keys $4 \boldsymbol{\Delta \nabla}$ or by directly dialling the key combination "menue, 2,8 ". A black square blinks alternately in place of the character you want to enter.

When "menue, 2,8 " is entered the display shows:


First, select the line by using number keys \#1...\#4. Pulse length initially set on this line will be shown.
Press "edit" to change it ("menue" for return).


Enter desired pulse length (max. 9.9 sec .) by using number keys \#0...\#9.
Confirm with "edit".

Standard pulse lengths are: $\begin{aligned} & \text { minute pulses } \\ & \text { half-minute pulses }\end{aligned}$ second pulses

1 second (default setting)
1 second
1 second (polarity shifts from positive to negative and vice versa without pause)

In minutes and half-minutes modes, the relation of pulse length to pause length is fixed at ratio 1:2, means length of pause is twice the time as pulse length.

Examples of pulse length/pause length in minutes mode:
a pulse length of 1 second entails a pause length of 2 seconds
a pulse length of 2 seconds entails a pause length of 4 seconds and so on.
Note: In seconds mode, pulse length is 0.5 sec . during adjustment. As in normal mode, pause length during adjustment is 0.0 sec .

## Menu 3: Switching (Switch Channels)

## Menu 3.1

## Status of Switch Channels

If the Master Clock is equipped with switch channels (see page 7) in this menu 3.1 the status of switch channels may be viewed, but can not be altered. Channels $1 . . .4$ (if applicable) are shown from left to right, indicating individual status.

- A number, 1...4, indicates corresponding channel is "on".
- A dash $(-)$ in place of the number indicates corresponding channel is "off".
- A dot to the right of the dash (-.) indicates "channel off and locked".
- A dot to the right of a number 4. indicates "channel on and locked".

channel No. 1: off
channel No. 2: on
channel No. 3: off and locked
channel No. 4: on and locked (examples only)


When delivered, no switching action is been programmed. A dash will represent every channel installed, if Master Clock is equipped accordingly.

## Menu 3.2

## General procedure for programming switch channels

For better understanding please also follow the display schematics and descriptions of the following pages.
 A black square blinks alternately with the character you want to enter.
2. Select channel by using number keys \#1...\#4, the number will be shown on the display.
3. Press arrow key , repeatedly if needed, until "new" is displayed on the right-hand in the upper line (unless it is already shown), see pictures of next page(s).
4. Press "edit", use arrow key $\mathbf{\Delta}$ to select "program week" or "program year" and press "edit" to confirm.
5. Using number keys \#1...\#7, select day(s)-of-week (1=Monday, $7=$ Sunday) or, in case of "program year", using number keys $\# 0 \ldots \# 9$, to enter the date for the switch action.
6. Enter the time and press "edit" to confirm.
7. Use arrow keys $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ to select the desired operation: "pulse" will turn the channel "on" for a certain period (to be defined) at the time you programmed, "on" will turn the channel "on" for an indefinite period, "off" will cancel either of the above selections,
"lock" will inhibit execution of all switch instructions entered on this channel, "unlock" will cancel a previous "lock" set on this channel.
Press "edit" to confirm.
8. If the selected function is either "on" or "off", programming for a week would be completed now.
9. If the selected function, however, is "pulse", the duration must be set, using number keys \#0...\#9. Duration may be from $1 . . .60$ seconds. Press "edit" to confirm.
10. The display will now offer a selection of repetitions " $0 . . .3$ ". If the pulse is not to be repeated, press "edit". Else press number key \#1 for 1 repetition (2 pulses total), key \#2 for 2 repetitions (3 pulses total) or key \#3 for 3 repetitions ( 4 pulses total), 3 repetitions is maximum. Press "edit to confirm.

## Entering a week's program

## Example 1: "pulse" program for a week

Assume channel 1 to control the bells in a school building, which are supposed to ring Monday through Friday at 08:00:00 for a duration of 4 seconds. Enter this program with the following steps:

Select menu 3.2 by either using the arrow keys $\boldsymbol{4 \nabla \nabla}$ or by directly dialling key combination "menue, 3, 2". A black square blinks alternately in place of the character you want to enter.

When "menue, 3,2 " is entered display shows:


Select channel 1 (unless it is not already shown) by pressing number key \#1. Press arrow key until "new" is shown top right (unless it is not already shown).
Press "edit" to confirm ("menue" to cancel).


Use arrow keys $\boldsymbol{\Delta} \boldsymbol{\nabla}$ to select mode "program week" (unless it is not already shown) and confirm with "edit" ("menue" to cancel).


Use number keys \#1...\#7 (1=Mo, 7=Su) to enter the days on which the bells are to ring. In our example keys \#1...\#5 for Monday till Friday.
Press "edit" to confirm ("menue" to cancel).

```
time
be: Mabe
```

Also use number keys to enter the time. A black square blinks alternately with the character you are dialling. Press number keys \#0 and \#8 for 08:00:00.
Press "edit" to confirm ("menue" to cancel).

```
    फ!%&"%
**:%-%=%
```


制

Meset :
e


Select the function to be performed, using arrow keys $\boldsymbol{\Delta} \boldsymbol{\nabla}$, in this case "pulse".
Press "edit" to confirm ("menue" to cancel).

Use number keys to enter duration, in this case \#0 and \#04 for 4 sec . A black square blinks alternately with the character you are dialling.
Press "edit" to confirm ("menue" to cancel).

In the next sub-menu "repeat", enter \#0 as number for no repetitions.
Press "edit" to confirm ("menue" to cancel).

Programming is completed. The display shows the data you entered. The figure at the right in the top line indicates which position your switch instruction has in the channel's programming. In this example, "1" stands for 1st instruction in channel 1 , "pl" stands for "pulse" is programmed.

## Example 2: timed switching "on", once a week

Assume a lighting system of the school, connected to channel 2, is supposed to be turned on at 17:00:00 hours each Wednesday ("off" see example 3, bottom this page).
 A black square blinks alternately in place of the character you want to enter.

When "menue, 3 , 2 " is entered the display may show (example):

```
## ##,#### #
```


$\square$



## $\dot{\omega}$ फ़ MTणन

```
###
```



```
    फ!+!
    ##
```



Select channel 2 by number key \#2. Press arrow key until "new" is shown top right (unless it is not already shown).
Press "edit" to confirm ("menue" to cancel).

Confirm "program week" with "edit" key.

Select Wednesday by pressing number key \#3 (1=Mo, 7=Su), confirm with "edit".

Enter the time 17:00:00 hours by pressing number keys \#1 and \#7 for 17:00:00. A black square blinks alternately with the character you are dialling.
Press "edit" to confirm ("menue" to cancel).

> Select the function to be performed, using arrow keys $\boldsymbol{\Delta} \mathbf{\nabla}$, in this case "on".
> Press "edit" to confirm ("menue" to cancel).

Programming is completed. The display shows the data you entered. The figure at the right in the top line indicates which position your switch instruction has in the channel's programming. In this example, "1" stands for 1st instruction in channel 2, "on" stands for "on" is programmed.

## Example 3: timed switching "off", once a week

Assume the above lighting system, connected to channel 2 and turned on at 17:00:00 hours on Wednesday, is to be turned off at 23:00:00 hours.

Follow procedure as described above, however, until sub-menu "time" only.

फाए।ाँ
$\because \mathrm{At}$

In „time" enter \#2 and \#3 for 23:00:00, confirm with "edit".
In "time" enter \#2 and \#3 for 23:00:00, confirm with "edit". "edit". Programming is completed.

## Programming for a Year

## Example 3: timed switching "on", once a year

Assume the lighting system of the school, connected to channel 2 , is supposed to be turned on at 18:00:00 hours on November $22^{\text {nd }}$ only. (Note: every Nov. $22^{\text {nd }}$ if not deleted later, see menu 3.2 "delete entry", page 45).

Select menu 3.2 by either using the arrow keys $\boldsymbol{\wedge} \boldsymbol{\wedge} \boldsymbol{\nabla}$ or by directly dialling key combination "menue, 3, 2". A black square blinks alternately in place of the character you want to enter.

When "menue, 3,2 " is entered, the display may show a time or the previous program of this menu.


## फ! <br> 

\%
Y:

```
##
\:######)
```

```
फ!#+|!
##
```



Select channel 2 by pressing number key \#2, press arrow key , repeatedly if needed, until "new" is shown in the display top right. Confirm with "edit" ("menue" to cancel).

Use arrow keys $\boldsymbol{\Delta} \boldsymbol{\nabla}$ to select mode „program year", confirm with "edit" ("menue" to cancel).

Enter the date by pressing number keys \#2 and \#1 for 22.11. A black square blinks alternately with the character you are dialling.
Press "edit" to confirm ("menue" to cancel).

Enter the time by pressing number keys \#1 and \#8 for 18:00:00 hours. A black square blinks alternately with the character you are dialling.
Press "edit" to confirm ("menue" to cancel).

Select the function to be performed, using arrow keys $\boldsymbol{\Delta} \boldsymbol{\nabla}$, in this case "on". Press "edit" to confirm ("menue" to cancel).

Programming is completed. The display shows the data you entered. The figure at the right in the top line indicates which position your switch instruction has in the channel's programming. In this example, " 3 " stands for 3 rd instruction in channel 2, "on" stands for "on" is programmed.

## Example 4: timed switching "off", once a year

The lighting system, connected to channel 2, has to be switched off at 19:00:00 hours on November $22^{\text {nd }}$ only. (Note: every Nov. $22^{\text {nd }}$ if not deleted later, see menu 3.2 "delete entry", page 44).

Select menu 3.2 by either using the arrow keys $\boldsymbol{\Psi \Delta \nabla}$ or by directly dialling key combination "menue, 3, 2". A black square blinks alternately in place of the character you want to enter.

When „menue, 3,2 " is entered the display may show a time or the previous program of this menu.


Select channel 2 by pressing number key \#2, press arrow
key , repeatedly if needed, until "new" is shown in the display top right. Confirm with „edit" („menue" to cancel).


Enter the date by pressing number keys \#2 and \#1 for 22.11. A black square blinks alternately with the character you are dialling.
Press "edit" to confirm ("menue" to cancel).
"

Enter the time by pressing number keys \#1 and \#9 for 19:00:00 hours. A black square blinks alternately with the character you are dialling.
Press "edit" to confirm ("menue" to cancel).

```
Function
##
```

Select the function to be performed, using arrow
keys $\boldsymbol{\Delta} \boldsymbol{\nabla}$, in this case "off".
Press "edit" to confirm ("menue" to cancel).


Programming is completed. The display shows the data you entered. The figure at the right in the top line indicates which position your switch instruction has in the channel's programming. In this example,"4" stands for 4th instruction in channel 2, "of" stands for "off" is programmed.

## Example 5：Year program „locked＂

The break bells of a school are attached to channel 1．The break bells must not ring due to school vacation from July $24^{\text {th }}, 08: 00: 00$ ，to August $4^{\text {th }}, 00: 00: 00$ ．
 A black square blinks alternately in place of the character you want to enter．

When „menue， 3,2 ＂is entered the display may show a time or the previous program of this menu．


Select channel 1 by pressing number key \＃1，press arrow key 1 ，repeatedly if needed，until＂new＂is shown in the display top right．Confirm with＂edit＂（＂menue＂to cancel）．

## फणササ आण サणサण

## Punction <br> ＊1एck



Use arrow keys $\boldsymbol{\Delta} \boldsymbol{\nabla}$ to select mode＂program year＂， confirm with＂edit＂（＂menue＂to cancel）．

```
:
```

:
※ \% \#

```
※ \% \#
```

$24.8{ }^{2}$

## $\therefore$＂： <br> 

Enter the date by pressing the corresponding number keys for 24．07．A black square blinks alternately with the character you are dialling．
Press＂edit＂to confirm（＂menue＂to cancel）．


#### Abstract

Enter the time by pressing the corresponding number keys for 08：00：00．A black square blinks alternately with the character you are dialling． Press＂edit＂to confirm（＂menue＂to cancel）．


Select the function to be performed，using arrow keys $\boldsymbol{\Delta} \boldsymbol{\nabla}$ ，in this case＂lock＂．
Press＂edit＂to confirm（＂menue＂to cancel）．

Programming is completed．The display shows the data you entered．The figure at the right in the top line indicates which position your switch instruction has in the channel＇s programming．In this example，＂2＂stands for 2nd instruction in channel 1，＂lo＂stands for＂locked＂is programmed．

Important：Programming of the school bells（in our example 1，page 39，Monday to Friday for 4 sec．each week） has now been locked as from 24．07．，08：00：00，and for all following days．To activate the programming this locking has to be released，see next example 6 ＂unlock＂．

## Example 6：Year program＂unlock＂

The locked program on channel 1，see example 5 on page 42，shall be released as per August $4^{\text {th }}, 00: 00: 00$ ．
Select menu 3.2 by either using the arrow keys $\boldsymbol{4 \nabla \nabla}$ or by directly dialling key combination＂menue，3，2＂． A black square blinks alternately in place of the character you want to enter．

When „menue， 3,2 ＂is entered the display may show a time or the previous program of this menu．


Select channel 1 by pressing number key \＃1，press arrow key ，repeatedly if needed，until＂new＂is shown in the display top right．Confirm with＂edit＂（＂menue＂to cancel）．

## ज世ण आ <br> サण世ण

Ete
ए4．
Use arrow keys $\boldsymbol{\Delta} \boldsymbol{\nabla}$ to select mode＂program year＂， confirm with＂edit＂（＂menue＂to cancel）．

## ：．．． <br> ：－：

```
फाल सिए
```




Programming is completed．The display shows the data you entered．The figure at the right in the top line indicates which position your switch instruction has in the channel＇s programming．In this example，＂ 3 ＂stands for 3rd instruction in channel 1，＂ul＂stands for＂unlocked＂is programmed．

Note：In our example school bells will now ring again as from Aug． $4^{\text {th }}, 08: 00: 00$ hours，as programmed in channel 1，every Monday to Friday，however，until next year Juli 24 ${ }^{\text {th }}, 08: 00: 00$ hours only，as programmed ＂locked＂this way！To delete programmed instruction（s）please see menu 3.2 ＂delete entry＂，page 45

## Menu 3.2

## Delete individual switch instructions (switch times)

Each individual switch instruction (switch time) of each separate switch channel can may be erased one by one in menu 3.2. If you want to delete all switch times of a switch channel proceed to menu 3.3.

Select menu 3.2 by either using the arrow keys $\boldsymbol{\wedge} \boldsymbol{\wedge} \boldsymbol{\nabla}$ or by directly dialling key combination "menue, 3, 2". A black square blinks alternately in place of the character you want to enter.

Select the appropriate channel by pressing number keys \#1...\#4.
The recently entered switch instructions will be displayed. You may leaf ("scroll") through each switch time(s) of each channel with the arrow keys


```
\(4 \pm \pm=\)
```

リㅍ
"t

Select the individual instruction of the corresponding channel you want to delete, in this example instruction --1 in channel 1.
Press number key \#0.

The display shows „delete entry?"
Enter \#1 if you do not want to delete the switch instruction. Enter \#2 for deletion of this switch instruction.

Switch times (=switch instructions) can be erased one by one for every separate channel. If further switching instructions of the same channel shall be erased one by one, proceed as described above.

If single switch instructions of another channel shall be erased one by one, you select the corresponding channel with the number keys \#1...\#4 and proceed as described above.

## Menu 3.3

## Delete all switch instructions (switch times)

All switch instructions (switch times) of each separate channel may be deleted in menu 3.3.
Select menu 3.3 by either using the arrow keys $\boldsymbol{4 \nabla \nabla}$ or by directly dialling key combination "menue, 3, 3". A black square blinks alternately in place of the character you want to enter.

Select the appropriate channel by pressing number keys \#1...\#4.
The recently entered switch instructions will be displayed. You may leaf through ("scroll") each switch time(s) of each channel with the arrow keys




Press the key „edit" if you want to delete all switch instructions of channel 1.
delete ell?
ण=1
$\mathrm{NO}=1, \mathrm{YES}=2$ will be indicated.
Enter \#1 if you do not want to delete the switch instruction.
Enter \#2 if you want to delete all switch instructions.

If all switch instructions of another channel shall be deleted, you select the corresponding channel with the number keys \#1...\#4 and proceed as described above.

## Menu 3.4

## Manual setting of switch channels ("test")

Each individual switch channel may be switched manually with this menu 3.4.
This menu 3.4 enables functionality test(s) on correctly connected optical and/or acoustical signal devices. If the required channel will be switched on the signal device(s) operate. After this test turn channel off again. If a switch program has already been entered it will not be effected, deleted or erased.

Select menu 3.4 by either using the arrow keys $\boldsymbol{4 \nabla \nabla}$ or by directly dialling key combination "menue, 3, 4". A black square blinks alternately in place of the character you want to enter.

The recently entered switch instructions will be displayed. You may leaf through ("scroll") each switch time(s) of each channel with the arrow keys


Press number keys \#1...\#4 to turn required channel on. Press number keys \#1...\#4 again to turn same channel off.

## Menu 4：Reports（＝messages）of the System

## Menu 4.1

## Reports（＝messages）

The Master Clock supervises the clock system on following errors：
1）Short－circuit of slave clock line（s）
2）Over－load of individual slave clock line（s）
3）Over－load of the clock system（total line load／total output power of the Master Clock exceeded）
4）Power failure
5）Low voltage
6）Battery back－up（accumulators）empty－system stopped
Select menu 4.1 by either using the arrow keys $\boldsymbol{\Psi \nabla \nabla}$ or by directly dialling key combination＂menue，4，1＂． A black square blinks alternately in place of the character you want to enter．

Important：Merely the number of error messages is displayed in menu 4．1．The error messages will be processed／cleared in menu 4.2 only．

If one of the errors mentioned above occurs，the number in the display（2）increases by the value 1 ，up to max． 8 ． As long as an error is stored，the red＂alarm＂LED below the display lights up and the alarm contact is switched on．

When＂menue， 4,1 ＂is entered display shows（example）：

4 ivmessese

Example shows 2 error messages in error list＂（2）＂．
Press arrow key $\boldsymbol{\nabla}$ to enter menu 4．2．

## Menu 4.2

## Edit on messages

The messages are stored and may deleted in menu 4．2．Up to max． 8 messages will be stored，however，the latest message is at first place．
 A black square blinks alternately in place of the character you want to enter．

When＂menue，4，2＂is entered display shows：

$$
\begin{aligned}
& \text { 区 = 世+ } \\
& \text { The messages can be leafed through (= scrolled) with } \\
& \text { arrow keys } \boldsymbol{4} \text { and and deleted with the key "edit". } \\
& \text { Example shows } 1 \text { of } 2 \text { stored error messages, in this case } \\
& \text { "short-circuit on line } 3 \text { ". }
\end{aligned}
$$

If error counter（error list）is set to 0 ，the red＂alarm＂LED will go off，the alarm contact will be switched off．

Attention：If an error message will be deleted the failure itself（e．g．short－circuit）is，of course，not been repaired！

1) Short-circuit on slave clock line(s)


He $4=5$
फल $\quad$ שே

With left shown message „short-circuit on line 4" (example), a dialogue will be initiated which allows to start the slave clock line as follows:

- Always repair failure first!
- Press „edit" to delete error message.
- Confirm with number key \#2 (= yes) to set (=start) line 4. All correctly connected slave clocks of this line will automatically adjust to the correct time.

Tip: $\quad$ You may delete error message by pressing number key \#1 before repair, however, line will not be adjusted! The advantage would be: if a loud acoustic signal is connected to the alarm contact you may switch off the disturbing signal only. Now repair failure (!) on slave clock line and start slave clock line 4 in menu 2.3 (see page 33).

## 2) Overload of single slave clock lines

Number of slave clocks of a single line exceeds the max. output power. Load carrying capacity of each single slave clock line please see page 33 , resp. menu 2.1. Consumption (= power drain) of each slave clock movement see page 33, or label on corresponding slave clock movement itself.

Debug: Reduce number of slave clocks of the corresponding line(s) or install a PEWETA booster amplifier (type series 930) for further extension of the output power.
After repair of the failure press "edit" key in menu 4.2 to delete the error message "overload Lx" ( $x=$ number of line), start slave clock line by following the dialog on LCD display, you may also see 1) as above, otherwise line remains in off-status.

## 3) Overload of all slave clock lines (complete system)

Number of slave clock of all lines exceeds the max. output power of the Master Clock. Load carrying capacity of each single slave clock line please see page 32, resp. menu 2.1. Consumption (= power drain) of each slave clock movement see page 32, or label on corresponding slave clock movement itself.
Status of lines (menu 2.3) will automatically be set to "off".
Debug: Reduce number of slave clocks of the corresponding line(s) or install a PEWETA booster amplifier (type series 930) for further extension of the output power.
After repair of the failure press "edit" key in menu 4.2 to delete the error message "overload". All slave clock lines must be set manually (= started) in menu 2.3 , please see page 34.

## 4) Power failure

the error message "power fail" informs that Master Clock has cut from mains power ( $230 \mathrm{VAC} / 50 \mathrm{~Hz}$ ). Is the Master Clock equipped with back-up batteries, see page 10, the slave clocks of the corresponding lines (battery on? See menu 2.6) will keep on operating for a certain period depending on number of slave clocks connected! If Master Clock is not equipped with back-up batteries, all slave clocks will stop, slave clock lines will be stopped. LCD display of Master Clock and red "alarm" LED will be turned off, however, Master Clock will count all missing pulses (minutes, minutes/seconds). After return of mains power these missing pulses will automatically be forwarded from the Master Clock to all slave clocks which finally display the correct, present time again.

Debug: Make sure that mains power $230 \mathrm{VAC} / 50 \mathrm{~Hz}$ is correctly connected to mains power terminal No. 3, see page 10. Also check mains power fuse (No. 2), see page 10. If defect, change it.

The error message "power fail" will automatically be deleted after return of mains power and/or change of mains power fuse.

If you delete error message "power fail" manually in menu 4.2 by pressing "edit" key but not having repaired the failure error message it will be displayed again after 3 to 5 minutes!

If failure is repaired, however, error message "power fail" will not be deleted automatically the Master Clock is faulty and may be sent to PEWETA for repair.

## 5) Low voltage

The error message „low voltage" informs about
a) either Master Clock has cut from mains power ( $230 \mathrm{VAC} / 50 \mathrm{~Hz}$ ) or
b) tension of the back-up batteries (if Master Clock is equipped accordingly) is less than 20 V at 24 V linetension status, resp. less than 10 V at 12 V line-tension status.
(All) slave clock line(s) will be stopped, all slave clocks are stopped.

Note: DCFport24 telegram slave clocks: All DCFport24 telegram operated slave clocks will be supplied with tension, however, time protocol will not be provided but slave clocks will operate in "Quartz-timebasis" for a certain period (depending on number of connected slave clocks) until tension of back-up batteries is less than 18 V at 24 V line-tension status resp. 8 V at 12 V line-tension status.

Debug: The error message "low voltage" is a sequence error of "power fail". Debug exactly as 4) "power fail". After repair of failure the error message "low voltage" will automatically be deleted. Slave clock line(s) will be started automatically.

## 6) Accu empty - system stopped

The error message "accu empty - system stopped" informs about
a) either Master Clock has cut from mains power ( $230 \mathrm{VAC} / 50 \mathrm{~Hz}$ ) or
b) tension of the back-up batteries (=accu = accumulators), if Master Clock is equipped accordingly, is less than 18 V at 24 V line-tension status, resp. less than 8 V at 12 V line-tension status.
(All) slave clock line(s) will be stopped, all slave clocks, including DCFport24 telegram slave clocks, are stopped. Master Clock cannot be used anymore via keyboard. LCD display will go out if tension of the back-up batteries (if equipped accordingly) is less than 6 V . If battery tension is less than 4 V even red alarm LED goes out and alarm relay opens.

Debug: The error message "accu empty - system stopped" is a sequence error of "low voltage". Debug exactly as 4) "power fail". After repair of failure the error message "accu empty - system stopped" will automatically be deleted. Slave clock line(s) will be started automatically.

## Menu 5: System

## Menu 5.1

## System

In menu 5.1 specific Master Clock profiles may be selected, activated/deactivated, adjusted or retrieved.
Select menu 5.1 by either using the arrow keys $\boldsymbol{\wedge} \boldsymbol{\wedge} \nabla$ or by directly dialling key combination "menue, 5, 1".
When "menue, 5,1 " is entered display shows:

$$
\cdots
$$

Press arrow key $\boldsymbol{\nabla}$ to proceed to menu 5.2...

## Menu 5.2

## Entering and changing the keyboard code

With a keyboard code the keyboard can be locked. If initialized, the operation and programming of the Master Clock is protected from inadvertent changes and/or from deliberate manipulations.

Select menu 5.2 by either using the arrow keys $\boldsymbol{4 \Delta \nabla}$ or by directly dialling key combination "menue, 5, 2". A black square blinks alternately in place of the character you want to enter.

When "menue, 5,2 " is entered display shows:



Display offers the possibility of entering or changing the keyboard code. The keyboard code in delivery state is " $\mathbf{0 0 0 0}$ ", the keyboard is not locked.
Press "edit" to confirm ("menue" to cancel).


First, enter your old code. In delivery state code is " $\mathbf{0 0 0 0}$ ". A black square blinks alternately with the character you are dialling.
Press "edit" to confirm ("menue" to cancel).
If you entered the correct old code, now enter your new code. Write down your individual 4-digit code before you are entering it! A black square blinks alternately with the character you are dialling.
Press "edit" to confirm ("menue" to cancel).
The keyboard locking will now activate automatically 10 minutes after the latest activity on the keyboard. Future keyboard locking always activates automatically 10 minutes after the latest keyboard activity.

```
Important: Code "0000" does not activate keyboard locking! Keyboard is not locked!
```

Important: Write down/note your individual keyboard code, preferably before entering! In case you can't remember your individual keyboard code please contact PEWETA.

Unlock (= open) keyboard
If the keyboard code is activated (= keyboard is locked) by input of individual 4-digit code (except "0000") the operator will be asked to enter the keyboard code at any keyboard activity to open the keyboard. In this case...

...enter your key code by using number keys \#1...\#9 and confirm activities with "edit". The keyboard is now open for keyboard actions.

Important: Keyboard locking activates automatically 10 minutes after latest keyboard activity!

## Menu 5.3

## Display language (= system language)

In menu 5.3 the display languages (language of the Master Clock) may be selected resp. changed. At present technical status the Master Clock offers following languages:

- German (display shows: deutsch)
- French (display shows: francais)
- Spanish (display shows: espanol)
- Dutch (display shows: nederlands)
- Italian (display shows: italiano)
- Portuguese (display shows: portugues)
- English (display shows: english)

At date of delivery the display language may be set to German only by manufacturer PEWETA.

When "menue, 5,3 " is entered display shows:



When display shows „Sprache deutsch" (language
German) and you want to change it press "edit".

Select desired language by using arrow keys $\boldsymbol{\nabla} \boldsymbol{\wedge} . .$.
..and confirm with "edit".

品

$$
\begin{aligned}
& \text { ! : : : }
\end{aligned}
$$

The display of the Master Clock will now show all information in selected language.

## Menu 5.4

## Time zone, manual entry

UTC-offset and date/time of start and end of summer-/wintertime changeover (= daylight saving) may be entered here in menu 5.4, provided "time zone manual" has been entered in menus 1.4 and/or 2.2.

When "menue, 5,4 " is entered display shows:

```
#########
```


UTE-Te=t


```
deyl: Seving
    4:=
```



णேேே

deyn sevne wart
hour

|  | month |
| :---: | :---: |
|  |  |

$\square$

Start input procedure by pressing the "edit" key. Every additional input step must be confirmed with "edit" until input procedure is completed.

First you need your local time zone (= time difference to UTC in hours and minutes). Press arrow key $\boldsymbol{\nabla}$ for a negative value, press arrow key $\boldsymbol{\Delta}$ to delete a negative omen. Enter corresponding values by pressing corresponding number keys \#1...\#9, confirm with "edit".

Next is to confirm whether you want daylight saving or not. If you enter "no" by pressing arrow key $\boldsymbol{\nabla}$ and confirm with "edit", input procedure is completed. If you enter "yes" and confirm with "edit" it will lead to further prompts.

Enter the month in which summertime starts. A black square blinks alternately with the character you are dialling. Confirm with "edit". An entry of \#1...\#6 (January..June) marks a regulation for the northern hemisphere, \#7...\#12 (July..December) for the southern hemisphere.
Enter the weekday in which summertime starts by arrow keys $\boldsymbol{\nabla} \mathbf{\Delta}$ and confirm with "edit".

Select first, second, third or fourth or the latter (of) the month (display shows "last") in which summertime starts with arrow keys $\boldsymbol{\nabla}$ or $\mathbf{\Lambda}$, confirm with "edit".

Enter the hour in which summertime starts. A black square blinks alternately with the character you are dialling.
Confirm with "edit".

Enter the month in which summertime ends. A black square blinks alternately with the character you are dialling. Confirm with "edit".

Select first, second, third or fourth or the latter (of) the month (display shows "last") in which summertime ends with arrow keys $\boldsymbol{\nabla}$ or $\boldsymbol{\Lambda}$, confirm with "edit".

Input procedure of Time zone with (or without) changeover of daylight saving is now completed.
Attention: The weekday and the hour of end of daylight saving period will be automatically copied from inputs of start of daylight saving period.

## Menu 5.5

## RS232 on/off

The RS232 interface may be switched on or off in menu 5.5. Standard is "off".
Select menu 5.5 by either using the arrow keys $\boldsymbol{4 \nabla \nabla}$ or by directly dialling key combination "menue, 5, 5".
When "menue, 5,5 " is entered display shows:


|  | \#\# |
| :---: | :---: |
|  |  |

...to display "on" or "off" status. Select desired status by keys $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$ and confirm with "edit".

## Menu 5.6

## Access code for the following service menus

Important: This service menu with its sub-menus is scheduled for the operator and/or technicians only!

The service menu can only be released by input of a specific code. The code No. is "1404". The code No. cannot be amended!
 A black square blinks alternately in place of the character you want to enter.

When "menue, 5,6 " is entered display shows:



```
#%:##%
```

$\cdots: . .$.

$\cdots: \ldots$
$\cdots \cdots: . . .$.
Press „edit"...
..... ..... ..... .....
... a black square blinks alternately with the character you are dialling. Enter "1404" by number keys, press "edit" to confirm.

Press arrow keys $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ to get to desired sub-menu.

## Menu 5.7

## Initialize system

"Initialize system" resets all parameters of the Master Clock to the standard modes (= defaults).
Important: Entered switch instructions in the switch channels (see menu 3 and sub-menus) will not be deleted!

## Note: $\quad$ Check whether menu 5.7 has been activated by input of the code No. 1404 in menu 5.6


When "menue, 5,7 " is entered display shows:

```
########
##+####
```

Press „edit"...

```
!:
```

जिt
जिt


... and select status by pressing number keys:
Key \#1: cancel
Key \#2: initialize system
All parameters of the Master Clock, except switch instructions of menu 3 and sub-menus, will be resetted to standard modes (= defaults).

## Menu 5.8

## DCF77 statistics

Menu 5.8 informs about current data of the DCF77 radio telegram. Remember: Only available within a radius of approx. $2,000 \mathrm{~km}$ around Frankfurt/Main and correctly connected/orientated DCF77 receiving aerial, see menu 1.5.

Note: $\quad$ Check whether menu 5.7 has been activated by input of the code No. 1404 in menu 5.6

Select menu 5.8 by either using the arrow keys or by directly dialling key combination "menue, 5,8 ".

When "menue, 5,8 " is entered display shows:


The data of the currently received DCF77 radio telegram will be displayed:

16:25:00 = time latest received
16.07.10 $=$ date latest received

5 = weekday of above date ( $1=$ Monday etc.)
31> = dezimal seconds of the DCF77 data
A3> = hexadecimal presentation of the DCF77 data
02 = number of necessary time telegrams remaining to take over the clear and usable DCF77-protocol.

## Menu 5.9

## Reports of internally measured tensions

This menu reports internally measured tensions of each slave clock line.

Note: $\quad$ Check whether menu 5.7 has been activated by input of the code No. 1404 in menu 5.6

When "menue, 5,9 " is entered display shows:


Example
(values shown are on basis "on/off switch"/voltage selector is on 24 V position, also see page 10, resp. check with your Master Clock and connected slave clock movements)
$5.9=$ menu 5.9
$21.5=$ line control tension is 21.5 V
$27.4=$ operating voltage for line drivers is 27.4 V (in 12 V -mode: 13.6 V )
$0.25=$ line current per each slave clock line is 0.25 ( $=0.25 \mathrm{~A}=250 \mathrm{~mA}$ )

## Menu 6: Options

## Menu 6.1

## Option 1, for example: GPS

If Master Clock is configurated as special option, for example as GPS-version incl. GPS receiving aerial (option suffix -95, please see page 15), the display shows the kind of option. In this example GPS card is connected to terminal 17, also see page 10. If necessary, menu 6.1 will be completed by sub-menus (not necessary for GPSversion). In any case, corresponding option will be explained by a separate installation manual, coming with the Master Clock.

Select menu 6.1 by either using the arrow keys $\boldsymbol{\wedge} \boldsymbol{\wedge} \nabla$ or by directly dialling key combination "menue, 6, 1".
When "menue, 6,1 " is entered display shows:
":
:…:

The display shows the kind of option.

## Menu 7: Options

## Menu 7.1

## Option 2, for example: RS485

If Master Clock is configurated as special option, for example with RS485 interface, the display shows this kind of option. In this example the RS485 interface is connected to terminal 18, also see page 10. If necessary, menu 7.1 will be completed by sub-menus (not necessary for RS485-version). In any case, corresponding option will be explained by a separate installation manual, coming with the Master Clock.

Select menu 7.1 by either using the arrow keys 4 $\boldsymbol{\nabla}$ - or by directly dialling key combination "menue, 7,1 ".

When "menue, 7,1 " is entered display shows:
$\square$
$\because \because$ \# \& : ए45

## Technical data

| Case |  |
| :--- | :--- |
| Material (case/frontglass) | Polycarbonate LEXAN® 500R/940A |
| Color (case) | RAL 7035 light grey |
| Measurements (HxWxD) | $184 \times 240 \times 115 \mathrm{~mm}$ (approx.) |
|  |  |
| Electrical values | $220 \ldots 230 \mathrm{VAC} / 50 \ldots . .60 \mathrm{~Hz}$ mains power |
| Operating voltage | Internal, snap-in termination |
| Permanent connection | 12 V or 24 V alternating slave clock line voltage |
| Line voltage | 53 VA (max.) |
| Power input | 2 A at 12 V line voltage, 1 A at 24 V line voltage, distributed on |
| Impulse current total, max. | max. 4 lines |
| (basis: minute pulse) | $2 \times$ accumulators $12 \mathrm{~V} / 0,6 \mathrm{Ah}$ (if equipped) |
| back-up batterie (extra) | Automatic adjustment of Master and slaves |
| after return of mains power |  |


| Performance features |  |
| :--- | :--- |
| Number of slave clock lines | 1,2 or 4, depending on type of Master Clock |
| pulse modes | Seconds, seconds with creeping minutes, minutes, DCFport24 |
| pulse telegram |  |
| World time funcitonality | 1time per line incl. time-zone pre-set |
| Password protection (operator lock) | 4-digit key-board code |
| Data interface | RS232 for synchronization of IT-network systems |
| Alarm contact | $30 \mathrm{~V} / 0.5 \mathrm{~A}$, potential-free |


| Signal facilities |  |
| :--- | :--- |
| Switch channels | none, 2 or 4, depending on type of Master Clock |
| Switch times | 600 (max.) |
| Switch modes | Mono- or bistable |
| Contact load | $250 \mathrm{VAC} / 2 \mathrm{~A}$ |


| Environmental values |  |
| :--- | :--- |
| Protection grade 32 (EN 60529$)$ |  |
| Safety class | I |
| Environmental temperature | $0 \complement^{\circ} . .40{ }^{\circ} \mathrm{C}$ |
| Weight (approx.) | 2.3 kg, max., incl. Batteries (if equipped) |


| DCF77 radio control (if equipped) |  |
| :---: | :---: |
| DCF77 receiving aerial | In scope of supply incl. 5 m connection wire (LIYCY $4 \times 0.25$ sqmm), may be extend to $100 \ldots 150 \mathrm{~m}$ max. |
| Case measurement (HxWxD) | $65 \mathrm{~mm}(+35 \mathrm{~mm}) \times 50 \mathrm{~mm}(+30 \mathrm{~mm}) \times 35 \mathrm{~mm}$ |
| Case color | RAL 7035 light grey |
| Case material | Polycarbonat MAKROLON® |
| Operating voltage | 7-30 VDC |
| Current consumption | 12 mA at 12 V (approx.) |
| Output current | $\leq 50 \mu \mathrm{~A}$ |
| Protection grade | IP 68 (EN 60 529) |
| Environmental temperature | $-10^{\circ} \mathrm{C} . .60^{\circ} \mathrm{C}$ |
| Weight, incl. stainless-steel fixture | 190 g (approx.) |

## Network Connection

At the bottom of the clock you will find a network connection (RJ45).
The master clock can synchronize to an NTP Server, which is located in the Network, like this it can receive Time and Date from an NTP Server.
The master clock cannot synchronize other NTP Clients (it is no NTP Server).
By default the Clock's network card is delivered as a DHCP Client.

## Configuration:

1. Establish a network connection:

2. At the bottom of the clock the network card's MAC Address can be found. Determine the corresponding IP in your DHCP Server.
3. Open a HTML browser and enter the IP into the address line and a Login-page will appear. If the IP is unknown you can also enter the name.
The name (for the DNS resolution) consist the following parts: "PWCLK", a minus sign, the last 6 digits of the MAC Address, a dot and the domain.

Example 1: IP is known: 192.168.66.81
Example 2: IP is unknown: PWCLK-123456.company.local


## Putting into Operation without DHCP Server:

1. Open the clear cover of the master clock
2. Remove the 4 screws of the keyboard and lift the keybord carfuly. Don't disconnect the wire of the keybord and the display. Now you can see the network interface of the master clock.
3. Remove the 2 screws of the terminal cover and remove the cover.
4. Put the on/off switch of the master clock in center position. The masterclock goes out (see page 13)
5. Keep placing a finger on the "reset button".
6. Put the on/off switch of the master clock in previous position. The masterclock goes on (see page 13)
7. The yellow LED of the network interface flashes every second. Wait until the yellow LED flashes for 6 times or more and remove your finger from the reset button.
8. Now, the clock's IP is 192.168.1.100 and can be contacted by a PC, which is in the same network.

9. Enter the password „ntp" and click on the button "login".

The „TOP MENU" appears:


Compatible with:

| Mozilla | Firefox | Version 43.0.1 or higher |
| :--- | :--- | :--- |
| Apple | Safari | Version 9.0.2 or higher |
| Microsoft | Internet Explorer | Version 11.0.9600 or higher |
| Microsoft | Edge | Version 25.10586 or higher |

5. By clicking on the arrow in front of the "info" button, the latest network parameters and the NTPSynchronization state are displayed:

| e761 | - - $\square$ \|x |
| :---: | :---: |
| (↔) 192 | $\cdots$ ¢ |
| Info name: location: ip: 19 mac: 64 last sync: | $2 \equiv W \equiv \Pi ム$ |
| logout |  |
| Clock |  |
| Timezone |  |
| Network |  |
| System |  |
| Help |  |

Menu „Clock":
Name: In this field fill in the device name. At corresponding DHCP configuration it can be used for DNS name resolution. Permitted are 15 characters as letters:

Letters: $\quad$ Between upper case and lower case is not differentiated, umlauts, spaces and "?" are notsupported.

Numbers: $\quad 0$ to 9
Special Characters: "-" characters, may not be at the beginning or the end
Location: $\quad$ Fill in a value which identifies the clock (e.g. location)


## Note:

Changes are only taken over if they are confirmed with „save"!
Please use the button „back" to return to the „TOP MENU" , do not use the return arrow of the HTML browser, because this would be cause a logout.

## Menu „Timeserver":

## Note:

Changes are only taken over if they are confirmed with "save"!
Please use the button "back" to return to the "TOP MENU", do not use the return arrow of the HTML browser, because this would cause a logout.

Local NTP port: In this field you can change the port of the main clock for the NTP protocol.
Accept broadcast: If you check the box the clock will synchronize on NTP broadcast packets.
Accept multicast: If you check the box the clock will synchronize on NTP multicast packets.
Multicast address: Fill in the multicast IP.
Server NTP port: Here you can change the port of the NTP server for the NTP protocol.
Timeserver 1 Fill in the standard NTP server.
Timeserver 2 Here you can fill in an alternative NTP server. If NTP timeserver 1 is not accessible, the requests are send to timeserver 2.

Timeserver $3 \quad$ Here it is possible to fill in an additional NTP server. If NTP timeserver 1 and 2 are not accessible, the requests are sending to NTP timeserver 3.

Timeserver 1 DHCP: If you have selected the box and the IP address of an NTP server is transmitted via Option 42 in the DHCP, a timeserver which was manually entered in Timeserver 1 will be overwritten.

## Figure on the next page

| e761 $\times+$ |  |  |  |
| :---: | :---: | :---: | :---: |
| （＊）192．168．66．91／ndex．htm |  | ${ }^{+}$ | 三 |
| －Info NTP clock V 1.2 |  | P三｜ $\mid$ 三пл |  |
| back T | Timeserver | sav |  |
| Local NTP port | $=123$ |  |  |
| Accept broadcast $=\Gamma$ |  |  |  |
| Accept multicast $=\Gamma$ |  |  |  |
| Multicast address $=224.0 .1 .1$ |  |  |  |
| Server NTP port $=123$ |  |  |  |
| Timeserver $1=192.168 .66 .3$ |  |  |  |
| Timeserver $2=0.0 .0 .0$ |  |  |  |
| Timeserver $3=0.0 .0 .0$ |  |  |  |
| Timeserver 1 DHCP $=\nabla$ |  |  |  |

## Menu „Network":

DHCP: If you have checked the box, the network card will obtain the network parameters from a DHCP server.

IP Address, Netmask, Default Router and DNS can be assigned/changed manually, if you have not checked the DHCP checkbox.

## Note:

Changes are only taken over if they are confirmed with "save"!
Please use the button "back" to return to the "TOP MENU", do not use the return arrow of the HTML browser, because this would cause a logout.

| $\times+\quad$-\|可 x |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  | 三 |
| - Info NTP clock V 1.2 |  |  |  |
| back | Network | save |  |
| DHCP | $\nabla$ |  |  |
| IP Address | $=192.168 .66 .91$ |  |  |
| Netmask $\quad$ 255.255.255.0 |  |  |  |
| Default router $=192.168 .66 .1$ |  |  |  |
| DNS $=192.168 .66 .5$ |  |  |  |

## Menu „System":

Note:
Changes are only taken over if they are confirmed with "save"!
Please use the button "back" to return to the "TOP MENU", do not use the return arrow of the HTML browser, because this would cause a logout.


## Restore factory settings and reboot:

Sets the network parameters back to the factory settings and restarts the network card.


Restore factory settings and reboot of the network interface at the master clock:

1. Open the clear cover of the master clock
2. Remove the 4 screws of the keyboard and lift the keybord carfuly. Don't disconnect the wire of the keybord and the display. Now you can see the network interface of the master clock.
3. Remove the 2 screws of the terminal cover and remove the cover
4. Put the on/off switch of the master clock in center position. The masterclock goes out (see page 13)
5. Keep placing a finger on the "reset button".
6. Put the on/off switch of the master clock in previous position. The masterclock goes on (see page 13)
7. The yellow LED of the network interface flashes every second. Remove your finger from the reset button before the yellow LED flases for 4 times.
8. Now, defaults are like in the Table of page 68.

Table of defaults:

| Clock |  |
| :--- | :--- |
| Name: | PWCLK-xxxxxx (last 6 digits of mac address) |
| Location: |  |
|  |  |
| Timeserver |  |
| Local NTP port: | not set |
| Accept multicast: | not set |
| Multicast address: | 224.0 .1 .1 |
| Server NTP port: | 123 |
| Timeserver 1: | not set |
| Timeserver 2: | not set |
| Timeserver 3: | not set |
| Timeserver 1 DHCP: | set |
|  |  |
| Network |  |
| DHCP: | set |
|  |  |
| System E-Mail |  |
| Mail server (SMTP): | 0.0 .0 .0 |
| Mail port: | 25 |
| User: | admin@this.net |
| Password: | not set |
|  |  |
| System Syslog |  |
| Server: | 0.0 .0 .0 |

Reboot: Reset of the network interface of the master clock without changing to default values.


E-mail: Deposit the e-mail parameters to receive error messages and system information.
The mail client supports SMTP with LOGIN- authentication. Enter the IPv4-address of your server and mail account information in this field and click on "save". This done, you can verify the connection by sending a test e-mail.

You will receive the following information via mail:

1. Reset
2. No time synchronization for more than an hour
3. Successful synchronization after reset or loss of synchronization


Syslog: Deposit a syslog-server to receive error messages and system information.

Enter the IPv4-address of your syslog-server in this field.
The clock sends out via UDP/Port 514.
You will receive the following Information via Syslog:

1. Reset
2. No time synchronization for more than an hour
3. Successful synchronization after reset or loss of synchronization

| e761 $\times$ | - 1 [] $\times$ |
| :---: | :---: |
| ( ¢) 192.168.66.91/ndex.htm | $\cdots$ c |
| - Info NTP clock V 1.2 | $p \equiv W \equiv T \wedge$ |
| back Syslog | save |
| Server $=0 \underline{0.0 .0 .0}$ |  |

## Technical Specifications of the Network Card

| Connection |  |
| :--- | :--- |
| Connector plug | RJ45 |
| Cable | CAT5 or higher |


| Electrical Values |  |
| :--- | :--- |
| Power Supply | PoE (Power over Ethernet) according to IEEE-Standard 802.3af- |
| Alternative Power Supply | 2003 |
| PoE | $12 \mathrm{~V}-24 \mathrm{~V}$ DC $(+/-10 \%)$ |
| Max. Power Consumption | Class 1 |
|  | 0,9 Watt |

## Performance Characteristics

| Network | Ethernet 10/100 BaseT Full/Half duplex, Auto negotiation, Auto |
| :--- | :--- |
|  | MDI-X |
| Protocols | IPv4, TCP, UDP, ICMP, ARP, IGMP, DHCP, HTTP, SNTP Client |
|  | (uni-, multi- und broadcast), SMTP, Syslog |


| Ambient Values |  |
| :--- | :--- |
| Protection Type | IP 30 (EN 60 529) |
| Protection Class | I |
|  | Operating temperature: $0 \ldots 55^{\circ} \mathrm{C}$ |
| Climate | Storage temperature: $-10 \ldots 60^{\circ} \mathrm{C}$ |
|  | $10-95 \%$ relative humidity at $25^{\circ} \mathrm{C}$, non-condensing |

## $p \equiv h=\pi$

## Firmware Update

Open a command line (also called console or terminal) and establish a connection to the clock with Telnet (telnet spaces IP). Confirm with Enter.


You will be asked for the clock's password, the deposited default password is "ntp". Confirm with Enter.

Now you access the main menu, select menu item 5 for "system" and confirm with enter:

```
*目Telmet 192.68.66.91 
```

This takes you to the system menu, select menu item 3 for "Update Firmware" and confirm with enter:


Enter " y " to continue the process or " n " to cancel operation.


After you enter "y" the Telnet connection is terminated.

|  | - \|a|x |
| :---: | :---: |
| ```connection terminated. send new firmware via tftp to IP 192.168.66.91 Verbindung zu Host verloren.``` |  |
|  |  |

Copy the update file onto a drive of your computer, open a command line and go to the same Directory as the update file:


Download the update file via TFTP command onto the clock: tftp -i IP put name.bin


The successful update is confirmed:


Put the clock back to factory settings: "Restore factory settings and reboot", see the top of page 14. If the clock is no longer reachable via HTML after the firmware update, please execute "Restore factory settings and reboot" on the clock, see the bottom of page 14.
rpelnenciocks
$P=N=\mathrm{AM}$

## Disposal

- Used and damaged products:


Electrical and electronic products do not belong to household waste! Please dispose the clock when it is no longer of use according to the current local regualtions.

■ Used batteries:


The user is legally obliged by battery regulation to return used batteries to local collecting points. Disposing used batteries in the household waste is prohibited! Batteries containing hazardous substances are marked with the crossed-out wheeled bin. The symbol indicates that the product is forbidden to be disposed via the domestic refuse. The chemical symbols for the corresponding hazardous substances are $\mathrm{Cd}=$ Cadmium, $\mathrm{Hg}=$ Mercury, $\mathrm{Pb}=$ Lead.

For any queries, additional information and further questions please contact:
PEWETA KG (GmbH + Co.) • Holsteinischer Kamp 64-66 • 22081 Hamburg, Germany
Tel ++49-40-20 98970 • Fax ++49-40-20 989796 • time@peweta.de • http://www.peweta.com

